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Abstract

The sequential minimal optimization (SMO) algorithm and variants
thereof are the de facto standard method for solving large quadratic
programs for support vector machine (SVM) training. In this paper
we propose a simple yet powerful modification. The main emphasis
is on an algorithm improving the SMO step size by planning-ahead.
The theoretical analysis ensures its convergence to the optimum. Ex-
periments involving a large number of datasets were carried out to
demonstrate the superiority of the new algorithm.
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1 Introduction

Training a support vector machine (SVM) for binary classification is usually
accomplished through solving a quadratic program. Assume we are given a
training dataset (x1, y1), . . . , (xℓ, yℓ) composed of inputs xi ∈ X and binary
labels yi ∈ {±1}, a positive semi-definite Mercer kernel function k : X×X →
R on the input space X and a regularization parameter value C > 0. Then
the dual SVM training problem is given by

maximize f(α) = yTα−
1

2
αTKα (1)

s.t.

ℓ∑

i=1

αi = 0 (equality constraint)

and Li ≤ αi ≤ Ui ∀ 1 ≤ i ≤ ℓ (box constraint)

for α ∈ Rℓ. Here, the vector y = (y1, . . . , yℓ)
T ∈ Rℓ is composed of the

labels, the positive semi-definite kernel Gram matrix K ∈ Rℓ×ℓ is given by
Kij = k(xi, xj) and the lower and upper bounds are Li = min{0, yiC} and
Ui = max{0, yiC}. We denote the feasible region byR and the set of optimal
points by R∗. On R∗ the objective function f attains its maximum denoted
by f∗ = max{f(α) |α ∈ R}.
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Solving this problem up to a sufficient accuracy seems to scale roughly
quadratic in ℓ in practice [7]. This relatively bad scaling behavior is one
of the major drawbacks of SVMs in general as the number ℓ of training
examples may easily range to hundreds of thousands or even millions in
today’s pattern recognition problems.

2 State of the Art SMO Algorithm

The sequential minimal optimization (SMO) algorithm [13] is an iterative
decomposition algorithm [12] using minimal working sets of size two. This
size is minimal to keep the current solution feasible. The algorithm explicitly
exploits the special structure of the constraints of problem (1) and shows
very good performance in practice. For each feasible point α ∈ R we define
the index sets

Iup(α) ={i ∈ {1, . . . , ℓ} | αi < Ui}

Idown(α) ={i ∈ {1, . . . , ℓ} | αi > Li} .

The canonical form of the SMO algorithm (using the common Karush-Kuhn-
Tucker (KKT) violation stopping condition) can be stated as follows:

Algorithm 1: General SMO Algorithm

Input: feasible initial point α(0), accuracy ε ≥ 0
compute the initial gradient G(0) ← ∇f(α(0)) = y −Kα(0)

set t← 1
do

1 select a working set B(t)

2 solve the sub-problem induced by B(t) and α(t−1), resulting in α(t)

3 compute the gradient

G(t) ← ∇f(α(t)) = G(t−1) −K
(
α(t) − α(t−1)

)

4 stop if(
max

{
G

(t)
i

∣∣ i ∈ Iup(α(t))
}
−min

{
G

(t)
j

∣∣ j ∈ Idown(α
(t))

})
≤ ε

set t← t+ 1
loop;

If no additional information are available the initial solution is chosen to
be α(0) = (0, . . . , 0)T resulting in the initial gradient G(0) = ∇f(α(0)) = y
which can be computed without any kernel evaluations.

It is widely agreed that the working set selection policy is crucial for
the overall performance of the algorithm. This is because starting from
the initial solution the SMO algorithm generates a sequence (α(t))t∈N of
solutions which is determined by the sequence of working sets (B(t))t∈N. We
will briefly discuss some concrete working set selection policies later on.

First we will fix our notation. In each iteration the algorithm selects a
working set of size two. In this work we will consider (ordered) tuples instead
of sets for a number of reasons. Of course we want our tuples to correspond
to sets of cardinality two. Therefore a working set B is of the form (i, j)
with i 6= j. Due to its wide spread we will stick to the term working set
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instead of tuple as long as there is no ambiguity. Whenever we need to refer

to the corresponding set, we will use the notation B̂ = (̂i, j) := {i, j}. For
a tuple B = (i, j) we define the direction vB = ei − ej where en is the n-th
unit vector of Rℓ. This direction has a positive component for αi and a
negative component for αj . We will restrict the possible choices such that
the current point α can be moved in the corresponding direction vB without
immediately leaving the feasible region. This is equivalent to restricting i to
Iup(α) and j to Idown(α). We collect the allowed working sets in a point α
in the set B(α) = Iup(α)×Idown(α)\{(n, n) | 1 ≤ n ≤ ℓ}. With this notation
a working set selection policy returns some B(t) ∈ B(α(t−1)).

The sub-problem induced by the working set B(t) solved in step 2 in
iteration t is defined as

maximize f(α(t)) = yTα(t) −
1

2
(α(t))TKα(t)

s.t.
ℓ∑

i=1

α
(t)
i = 0 (equality constraint)

Li ≤ α
(t)
i ≤ Ui for i ∈ B̂

(t) (box constraint)

and α
(t)
i = α

(t−1)
i for i 6∈ B̂(t) .

That is, we solve the quadratic program as good as possible while keeping
all variables outside the current working set constant. We can incorporate
the equality constraint into the parameterization α(t) = α(t−1) + µ(t)vB(t)

and arrive at the equivalent problem

maximize ltµ
(t) −

1

2
Qtt(µ

(t))2

s.t. L̃t ≤ µ
(t) ≤ Ũt

for µ(t) ∈ R with

Qtt =Kii − 2Kij +Kjj = vT
B(t)KvB(t)

lt =
∂f

∂αi
(α(t−1))−

∂f

∂αj
(α(t−1)) = vT

B(t)∇f(α
(t−1))

L̃t =max{Li − α
(t−1)
i , α

(t−1)
j − Uj}

Ũt =min{Ui − α
(t−1)
i , α

(t−1)
j − Lj}

and the notation B(t) = (i, j). This problem is solved by clipping the Newton
step µ∗ = lt/Qtt to the bounds:

µ(t) = max

{
min

{
lt
Qtt

, Ũt

}
, L̃t

}
. (2)

For µ(t) = lt/Qtt we call the SMO step free. In this case the SMO step
coincides with the Newton step in direction vB(t) . Otherwise the step is said
to hit the box boundary.

Recently it has been observed that the SMO step itself can be used for
working set selection resulting in so called second order algorithms [2, 5].
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We can formally define the gain of a SMO step as the function gB(α) which
computes the difference f(α′) − f(α) of the objective function before and
after a SMO step with starting point α on the working set B, resulting in α′.
For each working set B this function is continuous and piecewise quadratic
(see [5]). Then these algorithms greedily choose a working set B(t) promising
the largest functional gain gB(t)(α(t−1)) = f(α(t))−f(α(t−1)) by heuristically
evaluating a subset of size O(ℓ) of the possible working sets B(α(t−1)).

Fan et al. [2] propose to choose the working set according to

i = argmax

{
∂f

∂αn
(α)

∣∣∣∣ n ∈ Iup(α)

}

j = argmax
{
g̃(i,n)(α)

∣∣∣ n ∈ Idown(α) \ {i}
}

(3)

with g̃B(α) =
1

2

(vTB∇f(α))
2

vTBKvB
∈ R≥0 ∪ {∞}

where g̃B(α) is an upper bound on the gain which is exact if and only if the
step starting from α with working set B is not constrained by the box.1 Note
that in this case the Newton step µ∗ = (vTB∇f(α))/(v

T
BKvB) in direction

vB is finite and we get the alternative formulation

g̃B(α) =
1

2
(vTBKvB)(µ

∗)2 . (4)

This formula can be used to explicitly compute the exact SMO gain gB(α)
by plugging in the clipped step size (2) instead of the Newton step µ∗.

The stopping condition in step 4 checks if the Karush-Kuhn-Tucker
(KKT) conditions of problem (1) are fulfilled with the predefined accuracy ε.
List et al. [9] have shown that this is a meaningful stopping criterion. The
accuracy ε is usually set to 0.001 in practice.

SMO is a specialized version of the more general decomposition algo-
rithm which imposes the weaker condition |B(t)| ≤ q ≪ ℓ on the working set
size. The main motivation for decomposition is that in each step only the
rows of the kernel matrix K which correspond to the working set indices are
needed. Therefore the algorithm works well even if the whole matrix K does
not fit into the available working memory. The SMO algorithm has the ad-
vantage over decomposition with larger working sets that the sub-problems
in step 2 can be solved very easily. Because of its minimal working set size
the algorithm makes less progress in a single iteration compared to larger
working sets. On the other hand single iterations are faster. Thus, there is a
trade-off between the time per iteration and the number of iterations needed
to come close enough to the optimum. The decisive advantage of SMO in
this context is that it can take its decisions which working set B (correspond-
ing to the optimization direction vB) to choose more frequently between its
very fast iterations. This strategy has proven beneficial in practice.

In elaborate implementations the algorithm is accompanied by a kernel
cache and a shrinking heuristic [7]. The caching technique exploits the

1The software LIBSVM [2] sets the denominator of g̃B(α) to τ = 10−12
> 0 whenever

it vanishes. This way the infinite value is avoided. However, this trick was originally
designed to tackle indefinite problems.
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fact that the SMO algorithm needs the rows of the kernel matrix which
correspond to the indices in the current working set B(t). The kernel cache
uses a predefined amount of working memory to store rows of the kernel
matrix which have already been computed. Therefore the algorithm needs
to recompute only those rows from the training data evaluating the possibly
costly kernel function which have not been used recently. The shrinking
heuristic removes examples from the problem that are likely to end up at the
box boundaries in the final solution. These techniques perfectly cooperate
and result in an enormous speed up of the training process. We will later
use the fact that the most recently used rows of the kernel matrix K are
available from the cache.

The steps 1, 3, and 4 of the SMO optimization loop take O(ℓ) operations,
while the update 2 of the current solution is done in constant time.

There has not been any work on the improvement of step 2 of Algo-
rithm 1. Of course, it is not possible to considerably speed up a computation
taking O(1) operations, but we will see in the following how we may replace
the optimal (greedy) truncated Newton step with other approaches.

3 Behavior of the SMO Algorithm

We want to make several empirical and theoretical statements about the
overall behavior of the SMO algorithm. This includes some motivation for
the algorithm presented later. We start with theoretical results.

It is well known that the algorithm converges to an optimum for a number
of working set selection strategies. Besides convergence proofs for important
special cases [8, 15, 5, 3] proof techniques for general classes of selection
policies have been investigated [6, 10, 1].

Chen et al. [1] have shown that under some technical conditions on prob-
lem (1) there exists t0 such that no SMO step ends up at the box bounds for
iterations t > t0. For these iterations the authors derive a linear convergence
rate. However, the prerequisites exclude the relevant case that the optimum
is not isolated. Upper bounds for t0 are not known, and in experiments the
algorithm rarely seems to enter this stage.

From an empirical point of view we can describe the qualitative behavior
of SMO roughly as follows. In the first iterations, starting from the initial
solution α(0) = (0, . . . , 0)T , many steps move variables αi to the lower or
upper bounds Li and Ui. After a while, these steps become rare and most
iterations are spent on a relatively small number of variables performing
free steps. In this phase the shrinking heuristics removes most bounded
variables from the problem. Then working set selection, gradient update
and stopping condition need to be computed only on the relatively small set
of active variables, leading to extremely fast iterations.

Many common benchmark problems and real world applications are sim-
ple in the sense that the algorithm performs only a number of iterations
comparable to the number of examples. In this case only very few variables
(if any) are changed many times. This indicates that there are only very few
free support vectors or that the dependencies between variables are weak,
making the optimization easy. On the other hand, for harder problems the
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algorithm spends most of its iterations on free SMO steps to resolve compli-
cated dependencies between the free variables. In fact, in some cases we can
observe large blocks of iterations spent on a small number of variables. Due
to its finite number of optimization directions the SMO algorithm is prone
to oscillate while compensating the second order cross terms of the objective
function. This oscillatory behavior observed in case of difficult problems is
the main motivation for the consideration presented in the next section.

4 Planning Ahead

Without loss of generality we consider the iteration t = 1 in this section.
Assume we are given the current working set B(1) = (i(1), j(1)) and for

some reason we already know the working set B(2) = (i(2), j(2)) to be selected
in the next iteration. In addition, we presume that the solutions of both
sub-problems involved are not at the bounds. That is, we can simply ignore
the box constraints. From equation (4) we know with µ(1) = l1/Q11 and
µ(2) = l2/Q22 that both free steps together result in the gain

g2-step := f(α(2))− f(α(0)) =
1

2
Q11(µ

(1))2 +
1

2
Q22(µ

(2))2 . (5)

Under the assumption that we already know the working set B(2) we can of
course precompute the second step. To stress this point of view we introduce
the quantities

wt =
∂f

∂αi(t)
(α(0))−

∂f

∂αj(t)
(α(0)) = vB(t)∇f(α(0)) for t ∈ {1, 2}

which only depend on α(0) and are thus known in iteration t = 1. We rewrite

l1 = w1

l2 = w2 −Q12µ
(1)

with Q12 = Q21 = Ki(1)i(2) −Ki(1)j(2) −Kj(1)i(2) +Kj(1)j(2) = vT
B(1)KvB(2) .

Then we can express the step size

µ(2) = l2/Q22 = w2/Q22 −Q12/Q22µ
(1) (6)

in these terms. The above notation suggests the introduction of the 2 × 2
matrix

Q =

(
Q11 Q21

Q12 Q22

)

which is symmetric and positive semi-definite. If we drop the assumption
that both steps involved are Newton steps the computation of the gain is
more complicated:

g2-step(µ(1), µ(2)) := f(α(2))− f(α(0)) =

(
w1

w2

)T (
µ(1)

µ(2)

)
−

1

2

(
µ(1)

µ(2)

)T

Q

(
µ(1)

µ(2)

)
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Plugging everything in, and in particular substituting µ(2) according to
eq. (6) we express the gain as a function of the single variable µ(1) resulting
in

g2-step(µ(1)) = −
1

2
·
det(Q)

Q22
(µ(1))2 +

Q22w1 −Q12w2

Q22
µ(1) +

1

2
·
w2
2

Q22
. (7)

For µ(1) = w1/Q11 we obtain the gain computed in (5), but of course the
maximizer of the quadratic function (7) will in general differ from this value.
Thus, under the above assumption that we already know the next working
set B(2) we can achieve a better functional gain by computing the optimal
step size

µ(1) =
Q22w1 −Q12w2

det(Q)
(8)

where we again assume that we do not hit the box constraints which are
dropped. It is easy to incorporate the constraints into the computation, but
this has two drawbacks in our situation: First, it leads to a large number of
different cases, and second it complicates the convergence proof. Further,
dropping the constraints will turn out to be no restriction, as the algorithms
resulting from these considerations will handle the box constrained case
separately. Figure 1 illustrates the resulting step. We call the step µ(1) ·vB(1)

the planning-ahead step, because we need to simulate the current and the
next step in order to determine the step size µ(1). Analogously we refer
to µ(1) as the planning-ahead step size.

Just like the usual SMO update this step can be computed in constant
time, that is, independent of the problem dimension ℓ. However, the kernel
values of an up to 4 × 4 principal minor of the kernel Gram matrix K are
needed for the computation, in contrast to a 2 × 2 minor for the standard
SMO update step.

Note the asymmetry of the functional gain as well as the optimal step size
w.r.t. the iteration indices 1 and 2. We control the length of the first step,
which of course influences the length of the second step. The asymmetry
results from the fact that the second step is greedy in contrast to the first
one. The first step is optimal given the next working set B(2) and planning
one step ahead, while the second step is optimal in the usual sense of doing
a single greedy step without any planning-ahead.

Another interesting property is that for µ(1) 6∈ [0, 2 l1/Q11] the first step
actually results in a decay of the dual objective, that is, f(α(1)) < f(α(0)),
see Figure 2. Nevertheless, such steps can be extremely beneficial in some
situations, see Figure 1. Of course, by construction both planned-ahead
steps together result in an increase of the objective function, which is even
maximized for the given working sets.

5 Algorithms

In this section we will turn the above consideration into algorithms. We
will present a first simple version and a refinement which focuses on the
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vB(2)

v B
(1

)

Figure 1: Optimization path with (dark gray) and without (dotted) planning
ahead in a minimal scenario composed of only two possible working sets
B(1) and B(2). The light gray ellipses indicate niveau sets of the objective
function f . From these it is obvious that the first step of the dark gray
path results in a decrease of the objective function. However, while the
usual SMO procedure oscillates inside a cone bounded by the hyperplanes
{α | vT

B(t)∇f(α) = 0}, planning ahead one step results in the optimal step
size to solve this low dimensional problem.

convergence of the overall algorithm to an optimal solution. These modi-
fications are all based on the SMO Algorithm 1. Thus, we will only state
replacements for the working set selection step 1 and the update step 2.

In the previous section it is left open how we can know the choice of the
working set in the forthcoming iteration. If we try to compute this working
set given a step size µ, it turns out that we need to run the working set
selection algorithm. That is, the next working set depends on the current
step size and it takes linear time to determine the working set for a given
step size. This makes a search for the optimal combination of step size
and working set impractical. We propose a very simple heuristic instead.
For two reasons we suggest to reuse the previous working set: First, the
chance that the corresponding kernel evaluations are cached is highest for
this working set. Second, as already stated in section 3, the SMO algorithm
sometimes tends to oscillate within a small number of variables. Figure 1
gives a low-dimensional example. Now, if we are in a phase of oscillation,
the previous working set is a very good candidate for planning-ahead.

These considerations result in a new algorithm. It differs from the SMO
algorithm only in step 2. The basic idea is to use the previous working set
for planning-ahead. However, we revert to the standard SMO step if the
previous step was used for planning-ahead or the planned steps are not free.
This proceeding is formalized in Algorithm 2, which is a replacement for
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µ
µ∗

g̃

0
0 1− η 1 1 + η 2

g̃∗

(1− η2)g̃∗

g̃(µ) =
(
2 µ
µ∗
− ( µ

µ∗
)2
)
g̃∗

Figure 2: Gain of the step with size µ compared to the Newton step size µ∗.
As long as the quantity µ/µ∗ is in the open interval (0, 2) the step makes
some progress. For the interval [1 − η, 1 + η] the gain is even strictly lower
bounded by a fraction of 1 − η2 of the Newton step gain g̃∗. Note that if
the working set direction vB is in the kernel of the matrix K the parabola
is degenerated to a linear function. Then we distinguish two cases: If the
linear term of g̃ vanishes we set µ∗ = 0 and get g̃∗ = 0. Otherwise the graph
grows linearly corresponding to µ∗ = ±∞ and g̃∗ =∞.

step 2 of Algorithm 1.

Algorithm 2: Modification of step 2 of the SMO Algorithm

if previous iteration performed a SMO step (eq. (2)) then

Compute the planning-ahead step size µ = Q22w1−Q12w2

det(Q) (eq. (8))

assuming B(t−1) as the next working set
if the current or the planned step ends at the box boundary then

perform a SMO step (eq. (2))
else

perform the step of size µ as planned
end

else
perform a SMO step (eq. (2))

end

As already indicated in section 4 the algorithm uses planning-ahead only
if both steps involved do not hit the box boundaries. This means that
we need to check the box constraints while planning ahead, and we turn
to the standard SMO algorithm whenever the precomputed steps become
infeasible. Thus, there is no need to incorporate the box constraints into
the planning-ahead step size given in equation (8).

The algorithm works well in experiments. However, it is hard to prove
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its convergence to an optimal solution for a number of reasons. The main
difficulty involved is that we can not prove the strict increase of the objective
function for the planning-ahead step, even if we additionally consider the
subsequent iteration. Therefore we additionally replace the working set
selection step 1 of Algorithm 1 with Algorithm 3.

Algorithm 3: Modification of step 1 of the SMO Algorithm

Input: η ∈ (0, 1)
Input: µ(t−1): step size of the previous iteration t− 1
Input: µ∗: Newton step size of the previous iteration t− 1
if previous step resulted from planning-ahead then

// standard selection, see equation (3)
i(t) ← argmax{ ∂f

∂αn
(α(t−1)) | n ∈ Iup(α

(t−1))}

j(t) ← argmax{g̃(i(t) ,n)(α
(t−1)) | n ∈ Idown(α

(t−1)) \ {i}}

B(t) ← (i(t), j(t))
else

if 1− η ≤ µ(t−1)/µ∗ ≤ 1 + η then

// selection with additional candidate B(t−2)

i(t) ← argmax{ ∂f
∂αn

(α(t−1)) | n ∈ Iup(α
(t−1))}

j(t) ← argmax{g̃(i(t),n)(α
(t−1)) | n ∈ Idown(α

(t−1)) \ {i}}

B(t) ← (i(t), j(t))
if g̃B(t−2)(α(t−1)) > g̃B(t)(α(t−1)) then

B(t) ← B(t−2)

end

else

// selection with additional candidate B(t−2)

// based on g instead of g̃
i(t) ← argmax{ ∂f

∂αn
(α(t−1)) | n ∈ Iup(α

(t−1))}

j(t) ← argmax{g(i(t),n)(α
(t−1)) | n ∈ Idown(α

(t−1)) \ {i}}

B(t) ← (i(t), j(t))
if gB(t−2)(α(t−1)) > gB(t)(α(t−1)) then

B(t) ← B(t−2)

end

end

end

At a first glance this algorithm looks more complicated than it is. The
selection basically ensures that the planning-ahead step and the next SMO
step together have a positive gain: Recall that for µ(t−1)/µ∗ ∈ [1− η, 1 + η]
the planning step itself makes some progress, see Figure 2. The following
SMO step has always positive gain. Now consider the case that the planning-
step does not make a guaranteed progress, that is, µ(t−1)/µ∗ 6∈ [1− η, 1+ η].
The planned double-step gain (7) is by construction lower bounded by the
Newton step gain. Thus, if the previous working set is reused in the following
iteration the total gain is positive. Now the usage of the SMO gain g instead
of the Newton step gain g̃ for working set selection ensures that this gain can
only increase if another working set is actually selected in the step following
planning-ahead. Thus, both steps together have positive gain in any case.
In the following we will arbitrarily fix η = 0.9. Thus, we will not consider η
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as a free hyper-parameter of Algorithm 3.
It obviously makes sense to provide the working set which was used

for planning-ahead as a candidate to the working set selection algorithm.
As explained above, this property together with the usage of the SMO gain
function g instead of the approximation g̃ ensures positive gain of the double-
step. Of course, positive gain is not sufficient to show the convergence to an
optimal point. The following section is devoted to the convergence proof.

Although planning-ahead is done in constant time, it takes considerably
longer than the computation of the Newton step. For simple problems where
planning-ahead does not play a role because most steps end up at the box
bounds the unsuccessful planning steps can unnecessarily slow down the
algorithm. As discussed in section 3 this is mainly the case at the beginning
of the optimization. We introduce the following simple heuristic: If the
previous iteration was a free SMO step, then we perform planning ahead,
otherwise we perform another SMO step. Thus, we use the previous SMO
step as a predictor for the current one. Algorithm 4 captures this idea.

Algorithm 4: Modification of step 2 of the SMO Algorithm. The only
difference compared to Algorithm 2 is the first condition that the SMO
step must be free.

if previous iteration performed a free SMO step then

Compute the planning-ahead step size µ = Q22w1−Q12w2

det(Q) (eq. (8))

assuming B(t−1) as the next working set
if the current or the planned step ends at the box boundary then

perform a SMO step (eq. (2))
else

perform the step of size µ as planned
end

else
perform a SMO step (eq. (2))

end

The SMO algorithm with modified steps 1 and 2 as defined in Algorithms
4 and 3, respectively, will be referred to as the planning-ahead SMO (PA-
SMO) algorithm in the following. For completeness, we state the complete
PA-SMO algorithm at the end of the paper.

It is not really clear whether the consideration of the working set B(t−1)

for planning ahead is a good choice. In fact, it would be good to know
whether this choice has a critical impact on the performance. To evalu-
ate this impact we need to introduce a variant of PA-SMO. Because the
planning-step takes only constant time we could afford to perform N > 1
planning steps with the working sets B(t−n) for 1 ≤ n ≤ N and choose
the step size with the largest double-step gain. In this case we should also
provide these sets to the working set selection algorithm as additional can-
didates. We call this variant the multiple planning-ahead algorithm using
the N > 1 most recent working sets.
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6 Convergence of the Method

In this section we will show that the PA-SMO algorithm converges to the
optimum f∗ of problem (1). First we introduce some notation and make
some definitions.

Definition 1. We say that a function s : R\R∗ → R has property (∗) if it is
positive and lower semi-continuous. We extend this definition to functions
s : R → R which are positive and lower semi-continuous on R \ R∗. We
say that a function h has property (∗∗) if there exists a function s with
property (∗) which is a lower bound for h on R \R∗.

Recall two important properties of a lower semi-continuous function s:
First, if s(α) > 0 then there exists an open neighborhood U of α such that
s(α) > 0 for all α ∈ U . Second, a lower semi-continuous function attains its
minimum on a (non-empty) compact set.
The gap function

ψ(α) = max
{
vTB∇f(α)

∣∣∣B ∈ B(α)
}
∈ R

will play a central role in the following. Note that this function is used in
the stopping condition in step 4 of Algorithm 1 because it is positive on
R \R∗ and zero or negative on R∗.

Lemma 1. The function ψ has property (∗).

Proof. On R we introduce the equivalence relation α1 ∼ α2 ⇔ B(α1) =
B(α2) and split the feasible region into equivalence classes, denoted by [α].
Obviously, ψ is continuous on each equivalence class [α]. Now, the topo-
logical boundary ∂[α] of a class [α] is the union of those classes [α′] with
B([α′]) ⊂ B([α]). Because the argument of the maximum operation in the
definition of ψ is a subset of B([α]) on the boundary the maximum can only
drop down. Thus, ψ is lower semi-continuous. Further, it is well known that
ψ is positive for non-optimal points.

We collect all possible working sets in

B =
{
(i, j)

∣∣∣ i, j ∈ {1, . . . , ℓ} and i 6= j
}

and write the working set selection (3) as a map W : R → B. With this
fixed working set selection we consider the Newton step gain

g̃W : R→ R≥0 ∪ {∞}, g̃W (α) = g̃W (α)(α)

as a function of α, in contrast to the family of functions with variable working
set defined in eq. (4).

Lemma 2. There exists σ > 0 such that the function ϕ(α) = σ (ψ(α))2

is a lower bound for g̃W on R \ R∗. Thus, the Newton step gain g̃W has
property (∗∗).
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Proof. Of course, ϕ inherits property (∗) from ψ. We split R\R∗ =M ∪N
into disjoint subsets

M =
{
α ∈ R \R∗

∣∣∣ vW (α) 6∈ ker(K)
}

N =
{
α ∈ R \R∗

∣∣∣ vW (α) ∈ ker(K)
}

and introduce the constants

σ1 = max
{
vTBKvB

∣∣∣ B ∈ B
}

σ2 = min
{
vTBKvB

∣∣∣ B ∈ B with vTBKvB > 0
}
.

On M we have vTW (α)KvW (α) > 0. We proceed in two steps. First we

define the gap of the working set W (α)

ψW : R→ R, α 7→ vTW (α)∇f(α) .

Then we make use of a result from [2], where the bound ψW (α) ≥
√
σ2/σ1 ψ(α)

is derived in section 3. From the definition of g̃B(α) applied to the working
set B(α) we get the inequality

g̃W (α) =
1

2

(vTW (α)∇f(α))
2

vTW (α)KvW (α)

≥
1

2σ1
(ψW (α))2

resulting in the desired lower bound with

σ =
1

2σ1

(√
σ2
σ1

)2

=
σ2
2σ21

> 0 .

On N the situation is much simpler. For vTW (α)∇f(α) = 0 we can not

make any progress on the working set W (α) which contradicts α 6∈ R∗.
Thus we have vTW (α)∇f(α) 6= 0 which implies g̃W (α) = ∞. This is because
the quadratic term of the objective function in direction vW (α) vanishes and
the function increases linearly. Of course we then have g̃W (α) ≥ σ(ψ(α))2

for α ∈ N .

In contrast to [2] there is no need to use an artificial lower bound τ > 0
for vanishing quadratic terms in this proof. With the properties of ϕ at
hand it is straight forward to prove the following theorem:

Theorem 1. Consider the sequence (α(t))t∈N in R with (f(α(t))t∈N) mono-
tonically increasing. Let there exist a constant c > 0 and an infinite set
Tc ⊂ N such that the steps from α(t−1) to α(t) have the property

f(α(t))− f(α(t−1)) ≥ c · g̃W (α(t−1))

for all t ∈ Tc. Then we have lim
t→∞

f(α(t)) = f∗.
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Proof. Because of the compactness of R there exists a convergent sub-
sequence (α(t−1))t∈T̃ for some T̃ ⊂ Tc. We will denote its limit point by

α(∞). Assume the limit point is not optimal. Then ϕ(α(∞)) > 0 by prop-
erty (∗). The lower semi-continuity of ϕ implies ϕ(α) > 0 for all α in an open
neighborhood U ′ of α(∞). We choose a smaller open neighborhood U of α(∞)

such that its closure U is contained in U ′. Again by lower semi-continuity
ϕ attains its minimum m > 0 on U . There is t0 such that α(t) ∈ U for all
t ∈ T̃ with t > t0. Then we have

f(α(∞)) ≥ f(α(t0)) +
∑

t∈T̃ ,t>t0

f(α(t))− f(α(t−1))

≥ f(α(t0)) +
∑

t∈T̃ ,t>t0

c · g̃(α(t−1))

≥ f(α(t0)) +
∑

t∈T̃ ,t>t0

c · ϕ(α(t−1))

≥ f(α(t0)) +
∑

t∈T̃ ,t>t0

c ·m =∞ > f∗

which is a contradiction. Thus, α(∞) is optimal.

With the additional assumption that infinitely many SMO steps end up
free we can use Theorem 1 to show the convergence of Algorithm 1 to an
optimal solution. This was already proven in [2] without this assumption.

Corollary 1. Consider the sequence (α(t))t∈N in R with (f(α(t)))t∈N mono-
tonically increasing. If there are infinitely many t such that the step from
α(t−1) to α(t) is a free SMO step with working set (3) then we have lim

t→∞
f(α(t)) =

f∗.

Proof. For a free SMO step we have f(α(t)) − f(α(t−1)) = g̃(α(t−1)). Thus
we can simply apply the above theorem with c = 1.

The allurement of this approach is that we do not need any assump-
tion on the steps which differ from free SMO steps as long as the objective
function does not decrease. This is an ideal prerequisite to tackle the conver-
gence of hybrid algorithms which need to distinguish qualitatively different
branches, like for example the PA-SMO algorithm. Consequently, the fol-
lowing lemma will be helpful when applying the above results to PA-SMO.

Lemma 3. Consider two iterations t and t + 1 of the PA-SMO algorithm
where planning-ahead is active in iteration t. The double-step gain g2-step =
f(α(t+1))− f(α(t−1)) is then lower bounded by (1− η2) · g̃W (α(t−1)).

Proof. Let µ∗ denote the Newton step size in iteration t and let g̃∗ =
g̃W (α(t−1)) be the gain achieved by this (possibly infeasible) step. Just
like in Algorithm 3 we distinguish two cases:

1. The step size µ(t) satisfies 1− η ≤ µ(t)/µ∗ ≤ 1 + η:
We write the gain in iteration t in the form

(
2µ(t)/µ∗− (µ(t)/µ∗)2

)
· g̃∗,

see Figure 2. Together with the strict increase of the objective function
in iteration t+ 1 we get g2-step ≥ (1− η2) · g̃∗.

14



2. The step size µ(t) satisfies µ(t)/µ∗ 6∈ [1− η, 1 + η]:
By construction the planned ahead gain (7) is lower bounded by g̃∗

(see Section 4). The planning-step assumes that the working set B(t−1)

is selected in iteration t+ 1. However, another working set may actu-
ally be chosen. Because Algorithm 3 uses the SMO gain gB(α

(t)) for
working set selection the gain may only improve due to the choice of
B(t+1) 6= B(t−1). Therefore g2-step is even lower bounded by g̃∗. With
1− η2 ≤ 1 the desired bound follows.

The first case seems to complicate things unnecessarily. Further, it re-
duces the progress by a factor of 1 − η2. We could simply skip the second
if-condition in Algorithm 3 and in all cases turn to the else-part. From a
purely mathematical point of view this is clearly true. However, the usage of
the exact gain gB(α) instead of g̃B(α) is an unfavorable choice for working
set selection in practice. For performance reasons we want to allow the algo-
rithm to use the working set selection objective g̃B(α) as often as possible.
Thus we have to cover case 1 in Lemma 3, too.

Theorem 2. Let α(t) denote the sequence of feasible points produced by the
PA-SMO algorithm starting from α(0) and working at perfect accuracy ε = 0.
Then the algorithm either stops in finite time with an optimal solution or
produces an infinite sequence with lim

t→∞
f(α(t)) = f∗.

Proof. Because the algorithm checks the exact KKT conditions the finite
stopping case is trivial. For the infinite case we distinguish two cases. If the
sequence contains only finitely many steps which are planning ahead then
there exists t0 > 0 such that in all iterations t > t0 the algorithm coincides
with Algorithm 1 and the convergence proof given in [2] holds. Otherwise
there exists an infinite sequence (tn)n∈N of planning steps. Now there are at
least two possibilities to apply the above results. An easy one is as follows:
From Lemma 3 we obtain a constant c = 1−η2 such that Theorem 1 implies
the desired property. Alternatively we can argue that the double-step gain
is non-negative by Lemma 3. Algorithm 4 ensures that the SMO steps in
iterations tn − 1, n ∈ N just before the planning-ahead steps are free. Then
we can apply Corollary 1. However, the second variant of the proof does not
hold if we replace Algorithm 4 by Algorithm 2.

As already noted above Theorem 1 and Corollary 1 resolve the separate
handling of different cases by the algorithm in a general manner. In the case
of an infinite sequence of planning-ahead steps the proof does not consider
the other iterations at all. This technique is similar to the convergence proof
for the Hybrid Maximum-Gain second order algorithm presented in [5] which
needs to cover different cases to ensure convergence, too.

7 Experiments

The main emphasis of the experiments is to compare the PA-SMO algorithm
with the standard (greedy) SMO algorithm. The most recent LIBSVM
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version 2.84 implements Algorithm 1. For comparison, we implemented
the modifications described in Algorithm 3 and Algorithm 4 directly into
LIBSVM.

Note that in the first iteration starting from α(0) = (0, . . . , 0)T the com-
ponents yi = ±1 of the gradient ∇f(α(0)) = y take only two possible values.
The absolute values of these components are equal and they all point into
the box. Therefore the working set selection algorithm could select any
i(1) ∈ Iup(α

(0)) as the first index, because the gradient components of all in-
dices are maximal. Thus, there is a freedom of choice for the first iteration.
LIBSVM arbitrarily chooses i(1) = max(Iup(α

(0))). Of course, this choice
influences the path taken by the optimization. Experiments indicate that
this choice can have a significant impact on the number of iterations and the
runtime of the algorithm. Now, on a fixed dataset, an algorithm may appear
to be superior to another one just because it is lucky to profit more from
the asymmetry than the competitor. To reduce random effects, we created
100 random permutations of each dataset. All measurements reported are
mean values over these 100 permutations. Because the permutations were
drawn i.i.d. we can apply standard significance tests to our measurements.

We collected a set of 22 datasets for the performance comparison. For
the 13 benchmark datasets from [14] we merged training and test sets. The
artificial chess-board problem [4] was considered because it corresponds to
quadratic programs which are very difficult to solve for SMO-type decom-
position algorithms. Because this problem is described by a known distri-
bution, we are in the position to sample datasets of any size from it. We
arbitrarily fixed three datasets consisting of 1, 000, 10, 000, and 100, 000
examples. Six more datasets were taken from the UCI benchmark reposi-
tory [11]: The datasets connect-4, king-rook-vs-king, and tic-tac-toe

are extracted from games, while ionosphere, spambase, and internet-ads

stem from real world applications.
In all experiments we use the Gaussian kernel

k(xi, xj) = exp(−γ ‖xi − xj‖
2)

with the single kernel parameter γ > 0. The complexity control parameter
C and the kernel parameter γ were selected with grid search on the cross-
validation error to ensure that the parameters are in a regime where the
resulting classifiers generalize reasonably well, see Table 1. All experiments
were carried out on a Xeon 3 GHz CPU running Fedora Linux.

7.1 Results

We performed 100 runs (corresponding to the 100 permutations) per dataset
for both algorithms and measured the runtime and the number of iterations.
The results are summarized in Table 2.

There is a clear trend in these results. For some datasets the PA-SMO
algorithm significantly outperforms the SMO algorithm, while for other
datasets there is no significant difference. Most important, PA-SMO per-
forms in no case worse than standard SMO.

The number of iterations is significantly reduced in nearly all cases. This
result is not surprising. It basically means that the algorithm works as ex-
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dataset ℓ C γ SV BSV

banana 5,300 100 0.25 1,223 1,199

breast-cancer 277 0.6 0.1 178 131

diabetis 768 0.5 0.05 445 414

flare-solar 1,066 1.5 0.1 744 709

german 1,000 1 0.05 620 426

heart 270 1 0.005 158 149

image 2,310 100 0.1 301 84

ringnorm 7,400 2 0.1 625 86

splice 3,175 10 0.01 1,426 7

thyroid 215 500 0.05 17 3

titanic 2,201 1,000 0.1 934 915

twonorm 7,400 0.5 0.02 734 662

waveform 5,000 1 0.05 1,262 980

chess-board-1000 1,000 1,000,000 0.5 41 3

chess-board-10000 10,000 1,000,000 0.5 129 84

chess-board-100000 100,000 1,000,000 0.5 556 504

connect-4 61,108 4.5 0.2 13,485 5,994

king-rook-vs-king 28,056 10 0.5 5,815 206

tic-tac-toe 958 200 0.02 104 0

internet-ads 2,358 10 0.03 1,350 6

ionosphere 351 3 0.4 190 8

spam-database 4,601 10 0.005 1,982 583

Table 1: Datasets used for the comparison. The dataset size, the regular-
ization parameter C and the kernel parameter γ are given. The last two
columns list the resulting total number of support vectors and the number
of bounded support vectors. Due to the finite accuracy of the solutions these
mean values are not always integers. For clarity we provide rounded values.
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dataset time iterations
SMO PA-SMO SMO PA-SMO

banana 2.07 2.08 23295 > 19721
breast-cancer 0.02 0.02 313 > 292
diabetis 0.08 0.10 361 > 358
flare-solar 0.18 0.19 792 > 744
german 0.20 > 0.19 908 > 879
heart 0.02 0.02 113 112
image 0.45 0.46 6553 > 6359
ringnorm 2.41 2.27 1569 > 1537
splice 4.04 > 3.92 6643 > 5854
thyroid 0.02 0.01 744 > 667
titanic 0.54 > 0.47 3375 > 1653
twonorm 2.67 2.65 641 642
waveform 3.03 2.99 1610 > 1539

chess-board-1000 3.86 > 2.98 1883310 > 1186963
chess-board-10000 76.72 75.36 32130476 > 24997371
chess-board-100000 475.37 > 428.18 145364030 > 105199379

connect4-0.2 1268.04 1243.56 82076 > 77690
king-rook-vs-king 272.80 273.06 69410 > 64067
tic-tac-toe 0.10 0.10 8321 > 7786
internet-ads 2.38 2.31 2785 > 2750
ionosphere 0.03 0.04 411 > 408
spambase 8.36 8.36 9641 > 9171

Table 2: Comparison of standard SMO (Algorithm 1) and planning-ahead
SMO (Algorithm 5). Mean time in seconds and number of iterations are
listed. The “>” sign indicates that the left value is statistically significantly
larger than the right value (paired Wilcoxon rank rum test, p = 0.05 over
100 permutations of the datasets). The left value is in no case significantly
smaller than the right one.
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pected. However, early iterations working on the whole problem take much
longer than late iterations after shrinking has more or less identified the
interesting variables. Therefore it is natural that the number of iterations
is only a weak indicator for the runtime. The runtime of the PA-SMO algo-
rithm is usually slightly reduced in the mean. This difference is significant
in 5 cases. However, the striking argument for the algorithm is that it never
performs worse than the standard SMO algorithm.

Although both algorithms use the same stopping condition the dual ob-
jective values achieved slightly varies. A careful check of these values reveals
that the PA-SMO algorithm consistently achieves better solutions (paired
Wilcoxon rank sum test, p = 0.05) for all datasets but chess-board-100000.
Thus, the speed up is not a trivial effect of reduced solution quality. The
tests reveal that the contrary is the case, that is, the new algorithm outputs
better solutions in less time.

7.2 Influence of Planning-Ahead vs. Working Set Selection

It is interesting to look a little bit behind the scenes. Recall that we changed
two parts of the SMO algorithm. The truncated Newton step was replaced
by the planning-ahead Algorithm 4 and the working set selection was modi-
fied accordingly by Algorithm 3. It is possible to use the second modification
without the first one, but hardly vice versa. Therefore, we ran the SMO al-
gorithm with the modified working set selection but without planning ahead
to get a grip on the influence of these changes on the overall performance.
That is, we made sure that the algorithm selects the working set used two
iterations ago if it is a feasible direction and maximizes the Newton step
gain g̃. While the results of the comparison to standard SMO were com-
pletely ambiguous, the PA-SMO algorithm turned out to be clearly superior.
Thus, the reason for the speed up of PA-SMO is not the changed working
set selection, but planning-ahead.

7.3 Planning-Ahead Step Sizes

To understand how planning-ahead is really used by the algorithm we mea-
sured the quantity µ/µ∗ − 1, that is, the size of the planning-ahead step
relative to the Newton step. For free SMO steps this quantity is always 0,
for larger steps it is positive, for smaller steps negative, and for steps in the
opposite direction it is even smaller than−1. We present some representative
histograms in Figure 3. These histograms reveal that most planning-steps
are only slightly increased compared to the Newton step size, but there are
cases where the algorithm chooses a step which is enlarged by a factor of
several thousands. However, very few steps are reduced or even reversed, if
any.

Obviously the step size histograms are far from symmetric. Therefore it
is natural to ask whether a very simple increase of the Newton step size can
be a good strategy. By heretically using

µ(t) = max

{
min

{
1.1 ·

lt
Qtt

, Ũt

}
, L̃t

}
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Figure 3: Histograms (number of iterations) of the planning-step size µ
divided by the Newton step size µ∗, minus 1. On both axes a logarithmic
scale is used to increase the resolution for small values (to achieve this effect
for the x-axis we used the parameterization t 7→ sign(t) · (10t

2/2 − 1) which
is symmetric around the Newton step size corresponding to the origin of
t = µ/µ∗ − 1, with a high resolution around this point). The rightmost bin
counts all steps which exceed the scale, which is actually the case for the
chess-board-1000 dataset.

instead of equation (2) we still achieve 1 − 0.12 = 99% of the SMO gain in
each iteration (see Figure 2) and avoid the drawback of the more complicated
computations involved when planning-ahead. Further, this strategy can be
implemented into an existing SMO solver in just a few seconds. Experiments
indicate that it is surprisingly successful, no matter if the original working
set selection or Algorithm 3 is used. For most simple problems it performs
as good as the much more refined PA-SMO strategy. However, for the
extremely difficult chess-board problem this strategy performs significantly
worse.

7.4 Multiple Planning-Ahead

We now turn to the variant of the PA-SMO algorithm which uses more than
one recent working set for planning-ahead. This variant, as explained at the
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end of section 5, plans ahead with multiple candidate working sets. Further,
these working sets are additional candidates for the working set selection.
We can expect that the number of iterations decreases the more working
sets are used this way. However, the computations per iteration of course
increase, such that too many working sets will slow the entire algorithm
down. Thus, there is a trade-off between the number of iterations and the
time needed per iterations. Now the interesting question is whether there is
a uniform best number of working sets for all problems.
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Figure 4: The curves show the performance (mean runtime) of the PA-SMO
algorithm with 1, 2, 3, 5, 10, and 20 most recent working sets. All results are
normalized with the runtime of the standard variant (only the most recent
working set is used for planning ahead). Only datasets with runtimes above
100 ms are plotted, because otherwise the deviation due to the measurement
accuracy shadows the effect.

We performed experiments with the 2, 3, 5, 10, and 20 most recent
working sets. It turned out that the strategies considering the most recent
two or three working sets perform comparable to standard PA-SMO, and
even slightly better. For 5, and more drastically, for 10 or 20 working set
evaluations the performance drops, see Figure 4. This result makes clear
that we do not lose much when completely ignoring the multiple working set
selection strategy, and at the same time we stay at the safe side. Therefore
it seems reasonable to stick to the standard form of the PA-SMO algorithm.
On the other hand we can get another small improvement if the two or three
most recent working sets are considered.
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8 Conclusion

We presented the planning-ahead SMO algorithm (PA-SMO), which is a
simple yet powerful improvement of SMO. At a first glance it is surprising
that the truncated Newton step used in all existing variants of the SMO al-
gorithm can be outperformed. This becomes clear from the greedy character
of decomposition iterations. The experimental evaluation clearly shows the
benefits of the new algorithm. As we never observed a decrease in perfor-
mance, we recommend PA-SMO as the default algorithm for SVM training.
PA-SMO is easy to implement based on existing SMO solvers. Due to the
guaranteed convergence of the algorithm to an optimal solution the method
is widely applicable. Further, the convergence proof introduces a general
technique to address the convergence of hybrid algorithms.
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if the current or the planned step ends at the box boundary
then
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µ∗, Ũt

}
, L̃t
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{
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µ∗, Ũt

}
, L̃t
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(eq. (2))
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