From: José Mira-Mira, editor, Proceedings of the International Conference on Brain Pro-
cesses, Theories and Models. MIT Press, November 1995.

BUILDING VISUAL CORRESPONDENCE MAPS —
FROM NEURONAL DYNAMICS TO A
FACE RECOGNITION SYSTEM

Rolf P. Wirtz

Computing Science Dept., University of Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands

Ph.: 431 50 636496, fax:4+31 50 633800, email: rolf@cs.rug.nl

Abstract

On the basis of a pyramidal Gabor function representation of images two systems are
presented that build correspondence maps between presegmented memorized models
and retinal images. The first one is formulated close to the biology of neuronal layers
and dynamic links. It extends earlier ones by a hierarchical approach and background
independence. The second system is formulated in a way that is efficiently implement-
able on digital computers but captures the crucial properties of the first one. It has the
capability for object recognition under realistic circumstances which is demonstrated
by recognizing human faces independently of their hairstyle.

1 Introduction

A major conceptual task for developing theories about brain function is to decide on the
level of detail that is to be modeled vs. the level of abstraction necessary to capture essential
properties of higher brain functions. This paper shows an attempt to do modelling on two
quite different levels while keeping the properties considered crucial.

We will present two systems that can solve the visual correspondence problem between
a memorized model and a retinal image. The task is to decide which pairs of points
from image and model belong together, or to the same point on the physical object that
gave rise to both. We consider such a system crucial for object recognition, especially for
deformable objects.

If model and image are described by local features, these features are usually very
ambiguous, i.e. a given feature can typically come from various points in the object.
Correspondences found on the basis of the similarity of local features must therefore be
evaluated by taking their rough relative positions into account. The easy way out of
the problem, namely using more global features like, e.g., components of the amplitude
spectrum is blocked by the fact that these are extremely unstable under distortions or
changes in the background.



Figure 1: Sampling on the different frequency levels. The black spots mark the
centers of the wavelet kernels for different spatial frequencies. The upper row shows the
representation of the image, the lower one those of the model. Missing points have been
eliminated due to either background influence or very low response amplitude. The neur-
onal systems has been simulated for the lower two levels (leftmost 2 columns) only. The
neuronal layers are rectangular, those neurons without a location in the model represent-
ation are part of the layer dynamics but do not make or receive dynamic links. All three
layers have been used in the template matching scheme.

In section 2 we outline the representation of visual information which is based on the
Gabor function model of simple cells in the primary visual cortex. Section 3 presents a
detailed neuronal model of a system that solves the visual correspondence problem by an
active process that starts with the ambiguous feature similarity map and sorts out the
correspondences that also show the correct arrangement. It is based on the Dynamic Link
Architecture [5, 6, 4] and extends earlier systems by a shorter serial processing component
and independence of the background. This system is modeled by a set of differential
equations that govern the dynamics of neuronal layers and the dynamic links between
them.

The successful simulations of this systems are, however, too computationally intens-
ive to test a recognition system under realistic circumstances. Therefore, in section 4 we
replace the dynamics by a hierarchical template matching scheme. This scheme can be
accompanied by a phase matching component that can add subpixel accuracy to the map-



pings. How that part of the matching can be achieved in neural architecture is currently
unclear.

Finally, the recognition capabilities will be demonstrated by presenting the recognition
rates of human faces independent of their hairstyle.

2 Representation of models and images

The processing of a retinal grey-level image I in the primary visual cortex can be modeled
by a wavelet transform based on complex-valued Gabor functions with an extra term that
removes their DC-component:
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The single wavelet is parameterized by its spatial frequency 1_5, a two-dimensional vector
described by length and orientation. The responses of all spatial frequencies of some fixed
length form a frequency level, which assigns a small feature vector to all image points
on an appropriate sampling grid (see figure 1). The components of the feature vectors
correspond to the various orientations of the spatial frequency.

This pyramidal arrangement has the advantage that all responses which are influenced
by the background can be discarded (see figure 1 ¢) and d)). The stored model (or proto-
type) is segmented and its representation contains only the responses of Gabor functions
whose receptive fields fall completely inside the segmented area. The image representation
consists of a full pyramid.

Furthermore, the required sorting out of correspondences with the wrong geometrical
arrangement is greatly simplified, because it can be started on the lowest frequency level
with few points, and this rough information can then be refined on higher levels, where
parts of the layers can be worked on in parallel.

3 Hierarchical dynamic link matching

For the matching dynamics each frequency level of image and model is assigned a pair of
neuronal layers. Each pair of layers is interconnected reciprocally by dynamic links. The
layer dynamics have the general form:
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On the lowest frequency level the decision must be made which part of the image
matches the stored model best. Both layers are wired with short-range excitation and
global inhibition. In the presence of noise this supports a stable state with only one



Figure 2: Layer dynamics on level 1 and 0. As a visualization of the dynamic activity
on layer this figure shows three snapshots of a moving blob spaced by 25 simulation time

steps (layer 0, below) and three snapshots of the multiple blobs spaced by 4 time steps
(layer 1, above).

connected activity region (blob) [1]. A system of delayed self-inhibition (h(%)) is used to
make this blob move across the layer.

The dynamic links between the layers are initialized to the similarities between the
local features, namely vectors of Gabor amplitudes. They grow with a rate proportional
to the feature similarity plus the product of the output values of the pair of neurons they
connect (i.e. Corr(Z,y) without the part in square brackets). The growth is constrained
by thresholds for the total strength of outgoing and of incoming links, respectively. The
link dynamics take the form:
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In the beginning both blobs move freely and independently on their corresponding
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Figure 3: The development of the dynamic links. Each little rectangle contains the
link strengths between one horizontal scan line in model and image, respectively. Ideal
correspondences (e.g. for identical images) would show no links besides black diagonals
in the rectangles belonging to corresponding lines. a): In the beginning the links on the
lowest level reflect only the feature similarities, which are highly ambiguous. b):After 390
time steps the dynamics on this level have sorted out the correct correspondences, and
the first links have grown above the threshold where they are allowed to influence the
links on the d)higher frequency level. In that level link strengths are still proportional to
the feature similarities, and the ambiguities are even worse. In the bottom figures ¢) and
e) (snapshots after 1000 time steps) the links on both frequency levels are restrained to
the correct correspondences, the remaining ambiguities are due to the coarse sampling, as
the true correspondence would fall between sampling points. This problem can be solved
by matching the Gabor phases in the template matching scheme, but has currently no
neuronal implementation.



layers (see figure 2, lower part). Correlations make some links between the layers grow,
others decay. After some time, the links have become strong enough that the image blob
can only exist inside the region which corresponds to the model. From then on, the blob
decays outside this region after a while and spontaneously reforms inside the region. When
the links have grown even stronger, the image blob does not leave the region any more,
and the correct links grow until a one-one mapping has been reached.

The layer dynamics on the higher levels have mexican-hat-type interaction with a
kernel whose maximum is slightly off center. With appropriate parameters these dynamics
support a structure of many small blobs moving coherently across the layer. The delayed
self-inhibition is not active on the higher levels (¢, = 0) See the upper part of figure 2 for
a visualization of these dynamics.

The link dynamics on a higher level are triggered once some link on the previous level
has reached a threshold. Their growth rates have the same form as on the lowest level,
with the extra term in square brackets, which supports only the connections that have
already strong links on the previous layer (O denotes the Heaviside function).

With the feature similarities taken from images of human faces these dynamics can
establish rough correspondences on the lowest level, which are then refined on the higher
ones. This has been demonstrated by simulation of the first two levels. See figure 3 for
the development of the links on the lowest and the next level. The multitude of blobs on
the higher levels allows a partly parallel refinement of the correspondences estimated on
lower ones. As the processing time of the single blob dynamics increases like n* with the
(linear) layer size this system is inherently faster than others that use only one pair of
layers [3, 7, 2].

4 Hierarchical template matching

For a faster implementation the following simplifications to the neuronal systems have
been made.

The coarse localization of the counterpart of the model in the image is done by global
template matching of the vectors of Gabor amplitudes on the lowest frequency level. This
is not very expensive, because the resolution is low, and yields a first rough correspondence
mapping. It simulates the effect of dynamic link matching with a single blob, although
now only one link per model point can exist.

Consequently, the mapping refinement is done by local template matching with amp-
litudes from the next higher frequency level. For this, the model is split up into several
patches that independently search for correspondences in an area defined by the coarse
mapping already known.

If some feature similarities are very poor the situation may occur that no link signi-
ficantly wins over the others. This will be definitely the case when occlusion occurs. In
order to simulate this here, such point pairs are simply dropped from the mapping. This
results in a mapping with holes, but leads to more reliable correspondences.

Mappings acquired using only the amplitudes of the Gabor responses are not very
precise, because the fine geometrical information resides in the phases. On the other
hand, the phases or the full complex responses are not suitable for template matching (or



Figure 4: Correspondences on the highest level. This figure shows selected corres-
pondences from the mapping obtained by hierarchical template matching on the highest
frequency level. Although the refinement steps for distant locations are independent of
each other, the hierarchy suffices to rule out false correspondences. Due to the phase
matching part these correspondences are very accurate.

dynamic link matching) because they depend strongly on the sampling grid. Therefore,
a local phase matching has been implemented that enhances the accuracy of amplitude-
based mappings. This can be done in parallel on all model points. It has currently no
counterpart in the neuronal system.

The correspondences in figure 4 are chosen from the mapping on the highest frequency
level. Their accuracy shows the success of this scheme. Although the relative arrangement
of the mapping points was transported up from the lowest frequency level no grossly false
correspondences have been introduced. For more details on the mapping quality see [8].

5 Recognition

The procedures just described yield a correspondence map on every frequency level (see
figure 1). Each of them can be used for recognition in the following way. An incoming
image is matched to every model out of a database. Some global similarity is calculated
from the actual feature similarities and the distortion of the mapping. The model with
the highest similarity is the recognized one; the recognition is significant if the distance
of the highest similarity to the distribution of all similarities exceeds a suitable threshold.
This scheme has already been applied successfully in [4].



M1 <~ 11 M1 <~ 12 M2 ~ 11 M2 — 12
Method C S C S C S C S
Hier. level 0 71 o4 68 23 42 17 41 11
Hier. level 1 40 29 62 45 73 04 29 18
Hier. level 2 15 12 20 8 24 23 50 23
Hier. total 99 95 93 76 99 94 85 02
Level 2 only 94 89 86 69 94 93 78 49
FACEREC 95 93 92 81 19 1 14 1

Table 1: Recognition Results. This table shows the performance of the single hierarchy
steps (levels 0,1,2), the total hierarchy, the highest level alone and FACEREC, an earlier
system without mechanisms for background independence. Model base M1 contains the
faces without segmentation, M2 the same ones with the hair removed. The C columns
show the number of correct recognitions, the S the significantly correct ones. All numbers
are percentages of the number of test images.

In the coarse-to-fine hierarchical matching procedure described above the notion of
significance can been exploited to build a hierarchical recognition scheme: If a recognition
is significant on one frequency levels, the higher ones need not be evaluated.

In order to compare the background independence with the FACEREC algorithm
from [4] two model databases have been set up: M1 with model segments that were rect-
angular and uniform in size and M2 with model segments that were created by hand and
excluded the hair from the face images. Thus the person’s hair was treated as background,
there face proper as object. Both model bases contained 83 persons looking straight into
the camera.

For the experiments in table 1 two different image databases have been used: I1 con-
taining the same persons looking 15° to their side, which can be considered as a moderately
difficult case compared to I2 which contained I1 and for each person one image with the
head turned by 30° and one with a different expression. For each image database, the sig-
nificance thresholds have been adjusted such that no false positive recognitions occurred.
The important performance measure is thus the number of significant recognitions.

Table 1 shows that the total recognition performance of the hierarchical scheme is
scheme is better than that of the highest frequency level alone. Thus the distinguishing
features are distributed over the scales in a way which is not yet completely understood.
The FACEREC system described in [4], which has no mechanisms for background inde-
pendence, performs about as well as the hierarchical system with model database M1,
but breaks down completely with M2, where the background dependence of the feature
vectors becomes serious.



6 Discussion

Two models have been proposed that are capable of solving the visual correspondence prob-
lem and are to a certain extent neurobiologically plausible. Although full experimental
evidence for the existence of dynamic links in the brain is not yet available there are
good theoretical reasons to postulate some binding mechanism between pairs (or groups)
of neurons [5, 6, 4]. This scheme is an ideal framework for finding correct point corres-
pondences. Its partly sequential nature poses problems with the processing times under
realistic conditions. These problems can be greatly alleviated by the hierarchical approach
presented here.

Then the neuronal model has been simplified in order to allow rapid simulation on
a workstation. It could be shown that a face recognition system based on this model
performed reasonably and was superior to an earlier system in the presence of structured
background.

This paper shows a successful approach of modeling at two levels of abstraction at
the same time. Both models have influenced each other by giving ideas and posing new
open questions such as what might be the neuronal analogue to the phase matching in the
simplified model.
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