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Abstract. We have designed a research platform for a perceptually guided robot, which also serves as a demon-
strator for a coming generation of service robots. In order to operate semi-autonomously, these require a capacity
for learning about their environment and tasks, and will have to interact directly with their human operators. Thus,
they must be supplied with skills in the fields of human-computer interaction, vision, and manipulation.GripSee
is able to autonomously grasp and manipulate objects on a table in front of it. The choice of object, the grip to
be used, and the desired final position are indicated by an operator using hand gestures. Grasping is performed
similar to human behavior: the object is first fixated, then its form, size, orientation, and position are determined,
a grip is planned, and finally the object is grasped, moved to a new position, and released. As a final example for
useful autonomous behavior we show how the calibration of the robot’s image-to-world coordinate transform can
be learned from experience, thus making detailed and unstable calibration of this important subsystem superfluous.
The integration concepts developed at our institute have led to a flexible library of robot skills that can be easily
recombined for a variety of useful behaviors.

Keywords: service robot, human-robot interaction, stereo vision, gesture recognition, hand tracking, object recog-
nition, fixation, grasping, grip, perception, skill, behavior

1. Introduction

The majority of robots in use today perform only a
very limited preordained set of actions in a highly
structured and controlled environment. The next gene-
ration will need a much wider range of applicabi-
lity, in particular in the form of service robots that
can work in environments designed to be used by
their owners, not themselves. Examples are offices,
supermarkets, hospitals, and households; uncontrol-
lable environments such as hazardous areas in tech-
nical systems or in space also call for robots that can
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cope with circumstances not tailored to their needs.
Although some service robots for sweeping or vacuum
cleaning, lawn mowing or drink dispensing are al-
ready on the market, they have a long way to go
to be of practical use. Their limited range of capa-
bilities is not a classical robotics problem, as huge
progress has been made in, e.g., hardware and con-
trol software. This is not to deny the abundance of
open problems in robot control, but there, at least,
the problems are understood well enough to allow a
mathematical formulation. What is really lacking is a
convincing way of interaction with the environment.
The major difficulty is neither the acquisition of infor-
mation about the environment nor its manipulation—
cameras, microphones, and tactile sensors on one hand
and manipulators and speech synthesizers on the other
have already reached high standards. Rather, it is
the interpretationof the sensory data that poses the
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major obstacle for a robot to become trulysituated
(Suchmann, 1987) orembedded(Rosenschein, 1985),
with all the theoretical implications (Maes, 1994). We
claim that, currently, situatedness does not make much
of a difference for a robot because the resulting in-
formation is simply not available to its control sys-
tem. Even representations close to the raw sensory data,
which have been proposed as a way out of this problem,
need a level of reliability that eludes present method-
ology. In other words,perceptionremains the toughest
problem for autonomous robots.

Following the idea ofemergent functionality, an-
other approach to hard problems in robotics, one has
to cope with the functionality that a system provides
without having a systematic way of producing ade-
siredbehavior. In contrast to that, our concept might
be calledsemi-autonomy: a robot must dispose of a
repertoire ofskills that are carried out autonomously,
the actualcontrol of behavior must be left to a human
operator to an appropriate degree. In our system, we
have chosen to implement a gesture interface which is
suited for use by technically untrained people, a de-
cision dictated, of course, by the quest to provide a
prototype for a service robot. The long-term goal of
semi-autonomous robotics is the construction of an in-
telligent slave, although this might well turn out to be
a contradiction in terms.

Returning to the problem of perception, we feel
that nothing is wrong with internal symbolic repre-
sentations if (and this is a big restriction) they can be
constructed autonomously from rough, built-in con-
cepts. The development of the field has shown that
building representations is the hard part, while mani-
pulation of and reasoning from a given representation
are relatively straightforward. Chances are that novel
paradigms from the repertoire ofsoft computingwill
be important to complement classical AI paradigms,
which have their unquestioned success in processing
symbolic informationonce it is available.

Thus, for theoretical reasons as well as for consider-
ations about market demand, it appears safe to assume
that the important breakthroughs in robotics will be the
creation of a robot with serious perceptual capabilities.
This paper introducesGripSee, a robot designed as a
contribution towards that goal. Its environment is res-
tricted to a table top where everyday objects can be
manipulated and human operators can give commands
to the robot by means of hand gestures. This choice is
motivated by our focus on perception—in later stages
we plan to enableGripSee to gradually learn repre-
sentations of unknown objects by a combination of

observation and manipulation, and with only a mini-
mum of human intervention.

2. The Robot and Its Software

2.1. Design Principles

GripSee’s design was motivated by the fact that visual
perception can be supported to a large degree by active
components: an active camera head can change the di-
rection of view to avoid singular visual situations, a
robot arm can manipulate the object to get a global im-
pression of how it looks. Mobility would increase those
possibilities, but it also causes so many new problems
that we decided to leave it out initially.

As modeling visual perception almost invariably
means modelinghumanvisual perception, we have
chosen to let the robot components, specifically the
arrangement and kinematics of camera head and robot
manipulator, closely resemble the human eye, head and
arm arrangement (Fig. 1). This includes kinematic re-
dundancy to enable obstacle avoidance and leave some
flexibility in grasping and manipulation. This arrange-
ment has the additional advantage that the arm can
avoid occluding its own workspace. The camera sys-
tem imitates primate eyes in supplying a stereo system
with a “fovea” for each eye, i.e., an area of high resolu-
tion and color sensitivity, but necessarily small field of
view for those visual tasks requiring high spatial preci-
sion. Each fovea is surrounded by a “periphery” with
lower resolution, but a large field of view for tasks such
as motion detection, obstacle avoidance, and saccade
planning.

With regard to the control system, all individual
robot components are controlled by autonomous agents
that communicate with each other and with other
agents that implement specificskills. Overall control is
maintained by a separate agent that defines task time-
lines and contains a user interface. On the implemen-
tation level, each agent consists of one executable (see
Section 2.3 for details and Fig. 2 for an overview of all
components and their interactions).

2.2. Hardware

The robot hardware is shown in Fig. 1 and consists of
the following components:

• A modular robot arm with seven degrees of freedom
(DoF), kinematics similar to a human arm, and a
parallel jaw gripper;
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Figure 1. GripSee’s arm and camera head. The design closely resembles the structure of a human body.

• a dual stereo camera head with three DoF (pan, tilt,
and vergence) and a stereo basis of 30 cm for two
camera pairs with different fields of view (horizon-
tally 56◦ with color and 90◦ monochrome, respec-
tively);
• a computer network composed of two Pentium PCs

under QNX and a Sun UltraSPARC II workstation
under Solaris.

Image acquisition is done by two color framegrab-
ber boards controlled by one of the PCs, which also
controls the camera head and performs real-time im-
age processing, e.g., hand tracking (see Section 3.1.1).
The second PC controls the robot arm. Since image
data has to be transferred between the processors, they
are networked with FastEthernet to achieve sufficient
throughput and low latencies.GripSee’s hardware is
very similar to the one ofArnold (Bergener et al., 1997;
Bergener and Dahm, 1997), which is used by another

research group in our institute and is mounted on a
mobile platform.

2.3. Software Structure

Our software is based on the C++-libraryFLAVOR
(Flexible Library for Active Vision and Object Recog-
nition) developed at our institute. FLAVOR comprises
functionality for the administration of arbitrary images
and other data types, libraries for image processing,
object representation, graph matching, image segmen-
tation, robotics, and interprocess communication. It
supports flexibility, rapid prototyping, and safe and cor-
rect coding (Rinne et al., 1998).

As shown in Fig. 2, each component of the hardware
(arm with gripper, camera head, image acquisition) is
controlled by a separate server program that supports
multiple clients. Each module performing an image
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Figure 2. Modular structure of server and client processes, each of which implements an autonomous agent.

processing or robotics task (see Section 3) is imple-
mented as a separate program. A main control program,
theNEUROS Control Server, coordinates the separate
processes distributed over the network. It implements
the actual application (see Section 4) by defining the
timeline of actions to be performed; it also provides the
user interface to control the application and to display
results.

3. Skills Currently Implemented

In this section, we describe the individual modules that
currently comprise our system. In Section 4, we will
show in several examples how those can be combined to
yield useful behaviors. Results for the single skills and
for the overall behavior will be presented in Section 5.

3.1. Human-Robot Interaction

A gesture interface for a service robot must meet at least
two requirements. First, it must be person-independent,
i.e., the robot must understand commands given by dif-
ferent persons. Second, it must be robust with respect
to all the variation and background noise present in
natural environments. The interface we have developed

(Triesch and von der Malsburg, 1996, 1998) allows
the operator to transmit commands toGripSeeby per-
forming hand gestures, e.g., by pointing at an object
in a specific manner in order to have the robot pick up
the object in a specific way. It consists of two agents.
The first one tracks the operator’s hand, the second one
performs a refined analysis of the hand posture.

3.1.1. Hand Tracking. The hand tracking agent (see
Fig. 3) integratesmotion detection, color analysisand
stereo information. By combining these cues the pit-
falls inherent in each single one can be avoided to a
large degree. The motion cue is based on difference
images of subsequent frames. Smoothing and thresh-
olding yield a binary image with pixels belonging to
moving objects switched on. The color cue detects
pixels of approximate skin color by comparison with a
skin color histogram in HSI (hue, saturation, intensity)
color space. The histogram can, in principle, be cali-
brated in advance for a particular person, but it usually
suffices to use a non-restrictive default, which however
must be adapted to the lighting conditions.

For each camera, we obtain anattention mapby
computing a weighted sum of the results of the mo-
tion and color cues and smoothing with a Gaussian. It
highlights moving regions similar to skin color. For the
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Figure 3. Tracking of the operator’s hand relies on motion detection, skin color analysis and a stereo cue.

stereo cue, the attention maps of the left and right cam-
era are added. In the resulting map objects in the plane
of fixation are emphasized, since only these overlap.
Their depth is computed by comparing the positions
of local maxima in the left and right attention map.
For the purpose of the example procedure described in
Section 4, only the position of the object withmaxi-
mal response is calculated. We are aware of the fact
that much more sophisticated attention control meth-
ods are available, but at this point real time processing
is crucial.

3.1.2. Hand Posture Analysis. When the moving
hand stops its posture is analyzed byelastic graph
matching(Lades et al., 1993; Wiskott, 1996; Wiskott
et al., 1997). Different hand postures are represented
as attributed graphs, whose nodes carry local image
information in the form of responses to Gabor-based
wavelets, while the edges (in the graph-theoretical
sense) contain geometrical information (Fig. 4).

In previous work we have demonstrated that elas-
tic graph matching can be successfully applied to the
person-independent recognition of hand postures in

front of complex backgrounds (Triesch and von der
Malsburg, 1996). The system presented there was op-
timized for the robot application by using graphs with
fewer and sparser nodes, as well as by reducing the
number of allowed hand postures from ten to six (see
Table 1 for results for both systems). Higher perfor-
mance, which is necessary for truly reliable control,
can be achieved by investing in longer processing times
or more powerful hardware, especially for the wavelet
convolution (Triesch and von der Malsburg, 1996).

Table 1. Results for gesture recognition. The first two rows show
experiments with 10 gestures with different backgrounds. The bot-
tom row shows parameter settings, which yield relatively fast match-
ing and acceptable performance—those have been used for the over-
all behavior in Section 5.

Nodes Average
No. of No. of Percentage per matching
postures Background tests correct graph time (s)

10 Complex 239 86.2 35 16

10 Simple 418 93.8 35 16

6 Table top 96 78.1 25 5
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Figure 4. Successful matching of a model graph on the input image. Although not all nodes are positioned perfectly, the placing usually yields
correct recognition.

3.2. Object Localization and Fixation

In Section 3.3 we will apply a modified version of elas-
tic graph matching in the form of a high-level object
recognition module based on object edges. That mo-
dule works best if it is provided with a single object
within a region of interest as small as possible. The lo-
calization module solves that preprocessing task by the
heuristic that regions of high edge densities are candi-
dates for objects. It will also become important for au-
tonomous object learning because it only presupposes
very general knowledge of the object, namely that it is
rich in edges as compared to the background.

First, we obtain an edge description of the scene by
employing the Mallat wavelet transform (Mallat and

Zhong, 1992) as a multiresolution edge detector. Im-
portant features (“strong” edges) are enhanced using
a dynamical thresholding operation and converted into
binary format. Some results of the binarized edge des-
cription of a scene are shown in Fig. 5.

For a simple decision about thefocus of attention,
this edge map is low-pass filtered. The global maxi-
mum in each of the resulting images of a stereo pair be-
comes the first focus of attention. Its three-dimensional
position is estimated by comparing the position of the
global maxima in the left and right image. Both cameras
then make a fixation movement to adjust their centers
of view to that particular point (see Section 3.6.1 for
details of the fixation process). The object is now cen-
tered in the images of both fovea cameras.
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Figure 5. Preprocessing for the localization process. (a) Input picture from the left camera. (b) Feature extraction: thresholded and binarized
edge description of the scene. (c) Extracted blobs of interest. The point indicates the pixel with maximal intensity, which becomes the point of
fixation.

3.3. Object Recognition

After the fixation process, the object has to be classified
in terms of its shape. Our approach to object classifi-
cation relies upon object-adapted representations from
different viewpoints. We deal with the depth rotation
problem by using a multiview approach and call the re-
sulting representation amultigraph. Each multigraph
consists of a certain number of model graphs repre-
senting the same object from different viewpoints. We
create a discretization of a unit sphere for an object as
shown in Fig. 6 by placing the object on a rotating
table and taking images after rotation by multiples
of 9◦. The nodes of the multigraphs are labeled with
sets of local features calledjets, which are vectors
of responses of the Mallat wavelet transform (Mallot
and Zhong, 1992). The graphs are constructed in the

Figure 6. Gallery creation. (a) We sample a discrete unit sphere taking object images at steps of 9 degrees. (b) The corresponding model
graphs constituting the multigraph of the object.

following way. First, a regular graph is positioned on
the image, with nodes on a square lattice of pixels with
a spacing of 4. Edges are introduced to each of the 8
neighbors of every node. This graph is then thinned by
dropping nodes with transform values below threshold,
which usually results in different connected compo-
nents. From those components only the one with most
nodes is kept. Finally, nodes with more than 6 neigh-
bors are deleted, because they are likely to lie on a
surface rather than a contour. The remaining edges are
labeled with distance vectors between node position
(see Kefalea et al., 1997).

Recognition is done by elastic graph matching,
which compares stored multigraphs to the image in
terms of similarities between stored jets and jets ex-
tracted from the image, adapting location and size of
the model graphs until an optimum is found. In order to
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Figure 7. Results of a recognition process (for both left and right image). The superimposed graphs are the model graphs corresponding to
the most similar object in the gallery.

speed up the process and to avoid local minima, match-
ing proceeds in two steps. In the first step the graph
remains undistorted. The object location corresponds
to the position with maximal similarity between model
graph and input image. In the second step the scale
is adapted and the localization is improved. The graph
from the first step is now allowed to vary in size by
a common factor in the horizontal and vertical direc-
tion, and allowing a shift of the position of the resulting
graph by a few pixels to maximize similarity. The scale
factor is varied in the range from 0.8 to 2.0.

It is important to note that this process not only yields
the identity of the object, but also its orientation (with
an accuracy of 9◦) and its position with an accuracy of

Figure 8. Example for the grips stored with an object in the grip library.

about one pixel. Results of a typical recognition process
are shown in Fig. 7. Full details about the algorithm
can be found elsewhere (Kefalea, 1998, 1999; Kefalea
et al., 1997).

3.4. Grip Planning

For grasping an object, its position, size, orientation,
and type must be known. These are usually provided
by the object recognition module. For each known ob-
ject, several different grips are stored in agrip library
(see Fig. 8 for an example), where they are represented
in an object-centered frame.
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3.4.1. Building the Grip Library. The grip library
contains three items per object: (i) the possible grips,
(ii) the sizes of the object graphs if they are at a default
distance, and (iii) the systematic difference between
the real object center in three dimensions and the one
estimated by object recognition.

(i) The grips are represented in an object-centered co-
ordinate system. In the long run, good grips must
be learned from tactile feedback about their stabil-
ity, which has been postponed until the necessary
sensors are implemented. In the meantime we use
a reflex-controlled system, based on tactile feed-
back and inspired by the grip learning of infants
(Zadel, 1999). This works in a simulation setup on
CAD-models of the simple objects in our database
(cube, cylinder, cuboid, . . .). For the more com-
plicated objects such as the car in Fig. 10(e), the
grips have been preprogrammed.

(ii) For scaling the grips to different object sizes, the
sizes of the object graphs at the time of grip learn-
ing are needed. These sizes are dependent on the
orientation of the object.

(iii) The position of an object, i.e., its center of grav-
ity, is estimated from the centers of the object
graphs. Due to this two-dimensional estimation of
the object image centroids, there is a systematic
difference to the real object’s center of gravity. The
difference ranges from zero to about 25 mm and
depends on object type and orientation. This dif-
ference is learned in a simulation which thus helps
to substantially improve the accuracy of grasping
(Zadel, 1999).

The grip parameters (i)–(iii) are currently learned
in a simulation of the complete setup including robot,
table and object, the robot’s kinematics, image acqui-
sition, object localization, fixation, and object recog-
nition. The suitable grips for each object type are
defined and stored in the grip library. Then, the modules
for object localization and fixation are used to fixate the
simulated object, and object recognition determines the
sizes of the object graphs and their positions. The sizes
are normalized by the object’s distance, and the differ-
ence between the visually estimated and the real object
center is calculated. Finally, both are stored in the grip
library. This procedure is repeated for all object shapes
and orientations.

3.4.2. Selecting and Parameterizing a Grip.For se-
lecting a grip, the results of object recognition in both

images are averaged to reduce noise and quantization
effects (for the orientation angle). Then, the object type
is used to extract suitable raw grips from the grip li-
brary. These grips are scaled according to object size,
and the difference between the real object center and
the estimated one is compensated for as learned in the
simulation. The grips are then transformed into the ob-
ject’s position and rotated according to its orientation.
Finally, the grasp directions of each grip are matched
against the desired direction, and the best-matching
grip is passed on to be executed by the robot.

3.5. Robot Kinematics and Trajectory Generation

3.5.1. Universal Kinematics. In order to execute
a grip, a smootharm trajectory in three-dimensional
space has to be planned and transformed into joint
space, where control of the arm takes place. This trans-
formation depends on the robot geometry. As our
robot is modular and easily reconfigured, we have de-
cided against the use of analytical kinematics, which
would be specialized to a given configuration. Instead
we use numerical direct kinematics, which are sepa-
rate for each joint, as a local geometrical model of
GripSee’s arm. For control we use theresolved mo-
tion rate control method, which transforms a Cartesian
motion into a joint motion using the inverse Jacobian.
The Jacobian is calculated numerically as a partial ve-
locity matrix (Wampler, 1986) with the joint positions
and axes of the local geometrical model. As the robot
arm has a redundant DoF, the transformation of Carte-
sian movements into joint movements is not unique. In
this case the pseudoinverse of the Jacobian (Klein and
Huang, 1983), calculated bysingular value decompo-
sition, yields a minimum norm solution. The redundant
DoF, which is given by the null space of the Jacobian, is
handled with the gradient projection method (Klein and
Huang, 1983). This allows formulation of a secondary
task, e.g., dexterity optimization or obstacle avoidance.
For stabilization of motion near singularities we use a
damped least squares method(Wampler, 1986), which
balances the cost of large joint velocities against large
trajectory deviations in combination with the gradient
projection method for optimization of joint range avail-
ability.

This local control scheme runs at 100 Hz on
one of the Pentium processors and is independent of
the number of joints and their geometrical config-
uration. The robot-specific parameters are currently
measured by the user and supplied in the form of
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Devanit-Hartenberg parameters(see Paul, 1981 for a
definition) to the robot control module. There is also
the possibility to learn a robust model of the robot with
a hierarchical neural network (Ma¨el, 1996) using vis-
ual information, which is a major goal of our future
work. Currently, the camera coordinate frame is cali-
brated to the predetermined robot coordinate frame (see
Section 3.6).

3.5.2. Flexible Trajectories. Planning and generating
trajectories in a flexible and efficient manner is another
major problem in robotics. Our solution uses a cubic
spline interpolation to plan trajectories in joint or in
three-dimensional space, which are smooth in velocity
and acceleration. The first and final splines are of degree
4 and thus can handle boundary conditions for velocity
and acceleration. This allows a trajectory to be inter-
rupted at any time and a different one to be smoothly
fitted to it. In this way, complex trajectories can easily
be generated by combining simple ones. Our trajectory
generator also has the option to control only a subset
of the six end effector coordinates and leave the re-
maining degrees of freedom to optimize the movement
according to various requirements. This is especially
useful to exploit the redundant DoF in our robot arm.

3.6. Autonomous Calibration of the Camera Head

In this section we describe two successive tasks that
GripSeelearns autonomously. The first one is the fixa-
tion of a point in three-dimensional space, i.e., bringing
its projected position onto the left and right image cen-
ters. This skill is used by the object localization agent
(Section 3.2). The second task is the estimation of a
point’s spatial position, which enables the robot arm to
move to it, and finally grasp an object located there.

3.6.1. The Fixation Task. One way of solving the
fixation task is to compute a hard-wired solution of the
inverse kinematics of the stereo camera head. To avoid
problems resulting from damage and wear, we have
chosen for an adaptive component to learn this task. If,
during operation of the system, the fixation error ex-
ceeds a threshold, some learning steps will be executed
in order to regain calibration. This currently involves
an intervention by the operator but will be completely
autonomous once the performance (i.e., the precision
of a grip) can be assessed by visual and tactile feedback.

Because of the geometry of our camera head,
the images of both cameras are rotated against each

other by an angle depending on the current tilt and ver-
gence angles (Pagel et al., 1998a, 1998b). Therefore,
there is a nonlinear mapping from an object’s initial
pixel positions in each image and the current tilt and
vergence angles onto the desired increments of pan,
tilt, and vergence required for the fixation movement.

In order to represent that mapping, we first train a
growing neural gasnetwork (Fritzke, 1995) for the fix-
ation taskoffline in a simulation using a perfect model
of the hardware. This achieves an average fixation error
of about 0.5 pixels after less than 20,000 learning steps
and is meant to be a rough estimate of the true kinema-
tics. The error is computed by measuring the variance
of the object’s final position in both images. This accu-
racy (see Fig. 9) is achieved with a higher density of
neurons near the fixation point (the fovea) combined
with an additional fixation step (a small correction sac-
cade) (Pagel et al., 1998a, 1998b). When that mapping
is implemented on the real hardware, the average error
increases to about 5 pixels. The network is then trained
onlineby using the real kinematics ofGripSee’s hard-
ware. To this purpose, a small light (which can be easily
located in a darkened room) is held by the gripper into
the visual fields of both cameras at different random
locations in the robot’s workspace. After about 300 fur-
ther learning steps, the resulting average fixation error
drops below 1.5 pixels (Fig. 9).

3.6.2. The Position Estimation Task.To grasp suc-
cessfully, the head angles and arm positions have to be
coordinated. The arm moves the light to random po-
sitions in its workspace. After the two fixation steps
another growing neural gas network is trained with the
current head angles as input and the end effector po-
sition as output. Because only the offsets to the hard-
wired camera head kinematics are learned, we achieve
a minimum estimation error of about 5 mm after less
than 5 training steps. The internal lower bound for this
error is about 4 mm, computed for a fully extended
robot arm of one meter in length. This shows that the
second network is not needed for the current state of
our hardware. However, should any perturbations affect
the system, it would be very useful to restore sufficient
accuracy.

4. Example Behaviors

The skills we have implemented are among those cru-
cial for a perceptual robot. In this section, we will
present examples of how they can be combined to yield
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Figure 9. The fixation error of the network for the various parts of the self calibration process. See text for details.

a useful behavior. We will first describe the system
setup and then an example, in which the behavior con-
sists of grasping one of the objects placed on a table.
The operator selects the object by pointing to it with a
gesture indicating a grasp direction and then the object
is grasped. If only one object is present, grasping can
proceed without operator intervention. A third behav-
ior is to put down a grasped object at a point indicated
by the operator. The first and third behavior can be com-
bined for a complete pick-and-place task as illustrated
in Fig. 10.

4.1. System Setup

Before the system can be used, several things have to
be set up. Ideally, each of them should be constructed
completely autonomously, which would qualify each
setup as a behavior of its own. Fixation and triangu-
lation have to be calibrated. This is performed au-
tonomously using visual information and assuming
correct calibration of the arm (precise proprioception),
as described in Section 3.6. A set of hand postures is

defined and the postures have to be learned and stored
in ahand posture gallery. For that, the system goes into
a learning mode, in which examples of the postures are
presented, accompanied by keyboard commands that
identify them. Manual interaction is required to con-
struct the appropriate graphs. Then, a set of objects
has to be learned and stored in anobject gallery. It
must contain views from many directions, which is
currently done by placing the objects onto a rotating
table and recording model views at 9◦ apart. Possible
grips for each of the objects and other parameters have
to be learned and stored in a grip library. As system
for autonomous initialization of the basic grips exists
in simulation (Zadel, 1999) and will be implemented
as soon as the tactile sensors are working.

4.2. Recognizing and Grasping an Object of Choice

In the absence of input from the operator,GripSee
looks down onto the table where some objects are
placed. Then, the following sequence procedure is
started:
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Eight frames from a run of the whole behavior. (a) The user points to an object with a gesture (t = 2.6 s). (b) The gesture is
recognized and localized by graph matching (t = 82.2 s). (c) The object is recognized and localized (t = 142.9 s). (d) The arm is moved
towards the object (t = 164.8 s). (e) The object is grasped (t = 189.6 s). (f) The user depicts a point for putting down the object using another
gesture (t = 233.1 s). (g) The gesture is localized (t = 266.5 s). (h) The object is released (t = 308.5 s). An MPEG-video is available from
our web page.

(Continued on next page.)
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(g) (h)

Figure 10. (Continued).

Hand tracking: The hand of the operator is tracked as
soon as it enters the field of view.

Hand fixation: After stopping, the hand is fixated for
recognition of the posture.

Hand posture analysisis executed on the distortion-
reduced small central region of interest. This yields
type and position of the posture.

Object fixation: Starting from a point about 10 cm be-
low the center of the hand, the localization algorithm
detects an object, which is then fixated. This is an
iterative process which typically takes three or four
cycles to determine a good fixation point. Reduction
of the perspective distortion by fixation is crucial for
a good estimate of the object’s orientation in the fol-
lowing step.

Object recognition determines the type of object, its
position, size, and orientation in both images.

Fixation: The recognition module yields a more pre-
cise object position than the previous fixation. This
position is crucial for reliable grasping; therefore,
the object is fixated once more in order to get a
refined estimate of its spatial position by triangu-
lation.

Grip planning. A grip suitable for the object and the
type of grip indicated by the hand posture is selected
and transformed into the object’s position and orien-
tation.

Trajectory planning and grip execution. A trajec-
tory is planned, arm and gripper are moved to the
object, and finally the object is grasped. Another tra-
jectory transfers the object to a default position con-
veniently located in front of the cameras for further
inspection.

4.3. Selecting an Arbitrary Object

In the previous example, hand tracking and posture
analysis demonstrate our approach to human-robot in-
teraction. They are used to select an object and a grasp
direction, but they are not needed to find the object.
Thus, an alternative behavior can be started with ob-
ject localization and fixation. In that case, the robot
selects the most significant one (in the sense of edge
density) of the objects on the table and grasps it. The
height of the table is unknown to the robot and need
not be supplied, as the object’s position is determined
in space by fixation and triangulation. Thus,GripSee
can deal with objects at different heights, such as on
a table loaded with piles of paper. With simple modi-
fications of the attention mechanism for blanking out
objects already attended to, the procedure can be it-
erated to search for a an object with a specific shape,
which can, in turn, be indicated by a gesture, because
the meaning of the gestures can be assigned freely.

4.4. Placing a Picked Object

In a third example, demonstrating the flexibility and
modular design of the system, we extended the pro-
cedure to a pick-and-place operation: After the robot
grasps and picks up the object, the operator points out
where it should be placed. The skills are reused as
follows:

Hand tracking, hand fixation: GripSee again sur-
veys the field of operation for the operator’s hand to
appear.
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Hand posture analysis:Here, a reduced version with
only one posture for pointing (a fist) is used, because
now the requirement is to determine a precise three-
dimensional position to place the object.

Fixation: The hand is fixated to determine its exact
position.

Trajectory planning, execution, and release:A tra-
jectory is planned, the arm moves the object to the
desired location and the gripper releases it. In the
absence of further cues, the 3D-precision of that re-
lease is an immediate measure for the quality of hand
localization.

As for grasping,GripSee has no a priori informa-
tion about the height above the table but finds it by
triangulation. In fact, a robotically knowledgeable lab
visitor was impressed whenGripSeereleased an object
smoothly onto his palm with his fist pointing at it, a be-
havior that had not been tested (and not even thought of)
before. More example behaviors can be implemented
with relatively little effort. The overall success of the
system relies heavily on the quality of the perceptual
components, which is relatively good and subject to
continuous improvement.

5. Results

In this section, we present quantitative results for the
single skills as well as for the overall behaviors.

5.1. Results for Gesture Control

Table 1 shows the results of gesture recognition, which
becomes faster and more reliable when fewer gestures
are used. A further speedup can be achieved by reduc-

Table 2. Confusion matrix for the experiments in the lower row of Table 1. The letters correspond to the
gestures from Fig. 11. The total number of experiments is 96.

Posture Taken as A Taken as B Taken as C Taken as D Taken as E Taken as F Errors

A 15 1 1

B 11 5 5

C 2 13 1 3

D 1 14 1 2

E 3 13 3

F 5 1 1 9 7

Errors 8 1 9 1 2 0 21

Figure 11. The six gestures used for control (upper row: A, B, C,
bottom row: D, E, F).

ing the number of nodes in the graphs. The parameter
set used onGripSeeis shown in the third row of Table 1,
the first two rows show results for a larger gallery. The
six gestures used for control are shown in Fig. 11.

For reliable gesture control and for the assignment of
meaning to the individual postures not only the absolute
recognition rates are important but also the confusion
matrix which is shown in Table 2. The main confusions
(F taken as A and B taken as C) are caused by the at-
tempted background independence, because part of the
hand is erroneously regarded as background, a problem
which can be alleviated by a more careful selection of
meaningful postures.

5.2. Results for Object Recognition

Object recognition performs well both in cases of uni-
form and lightly structured background. Since object
features are extracted only at points on contours, recog-
nition is independent of surface markings, which is an



Gesture-Controlled Robot for Object Perception 217

Table 3. Results for object recognition. The back-
grounds ranged from a uniform color (unstructured) over
moderately complex (lab scene) to difficult (newspapers
under the object). The number of nodes per graph varied
between 10 and 30, the average matching time was 30 s
in each case.

No. of No. of Percentage
objects Background tests correct

12 Unstructured 72 95.8

12 Moderately complex 52 92.3

12 Difficult 56 82.1

advantage in our setting because for grasping the ob-
ject’s shape matters much more than the texture on the
surfaces. In its current state the system has 12 stored
objects, and recognition time is roughly proportional
to that number. Typically, it takes the Sun workstation
about 2–3 s to match withonemultigraph, i.e., compare
with one object.

The performance of object localization and recogni-
tion also depends on the parameters. The results of large
comparison runs, which are currently under way, will
be published elsewhere (Kefalea, 1999). Some figures
that indicate the performance are shown in Table 3. In
the case of object recognition, the number of nodes per
graph varies considerably.

5.3. Results for the System as a Whole

Figure 10 shows an example run of the most compli-
cated behavior implemented, a sequence of (a) a user
pointing at an object, (b) the posture being recognized,
(c) the object pointed to being recognized, (d–e) and
picked up, (f) another gesture for determining where
to put down the object, (g) its localization, and (h)
the final release of the object. The whole sequence
takes 5.9 minutes. The durations of posture and ob-
ject recognition are longer than the ones in Tables 1
and 3, because the graphical display of the process is
time consuming and irrelevant for the behavior itself.
An MPEG-video of this run is available from our web
page.

Results for the autonomous calibration of the camera
head have been published (Pagel et al., 1998a, 1998b).
Figure 9 shows the precision of fixation after calibra-
tion.

The performance of grasping and releasing is com-
pletely determined by the localization of the gesture
and by the correctness of object recognition. Where

those fail, manipulation fails. This shows the need to
include grasping under visual feedback in later stages
of the work. Given ideal results of object recognition,
the uncertainty of the grasping position resulting from
the finite image resolution is about 2× 2 mm in the
image plane and 1 cm in depth.

6. Conclusions and Future Work

We have designed and demonstrated a system which
displays many of the basic skills required of a service
robot: human-robot interaction (control by an opera-
tor through pointing and gestures), spatial vision (find-
ing regions of interest and fixating them, recognizing
objects and estimating their geometrical parameters),
manipulation (grip and trajectory planning), and adap-
tive self-calibration. We have shown that specific com-
plex behaviors can be easily set up from the building
blocks that implement these individual skills. Concept
and operation of the system can be compared to related
work from a variety of viewpoints, from which we pick
man-machine interaction, perceptual capabilities, and
organization of behavior.

Simple man-machine interaction is one of the ma-
jor prerequisites for useful service robots. It is gener-
ally felt that a user interface should contain language
and visual interaction (Dario et al., 1996; Kawamura
et al., 1996), which goes to such lengths as equipping a
robot with a face capable of changing expression (Hara
and Kobayashi, 1997). For special solutions for handi-
capped persons, a graphical user interface may be the
method of choice (Tsotsos et al., 1998). We have de-
cided to develop a gesture-based user interface, because
of the conceptual relatedness to our object recognition
approach. Examples for related systems are (Cipolla
and Hollinghurst, 1997; Crowley, 1996), which need a
uniform background. In our system, special care has
been taken to achieve good recognition in the pres-
ence of difficult backgrounds. The opposite direc-
tion of interaction—passing messages fromGripSee
to the user—is currently only implemented via a
terminal.

A huge amount of work has been done on visually
guided grasping, e.g. (Hutchinson et al., 1996; Pauli,
1998; Yau and Wang, 1997). Our system currently only
uses vision for the estimation of the position and orien-
tation of an object and grasps it blindly. Although this
is not satisfactory in the long run, it illustrates the qua-
lity of the object recognition method we are using. One
of our most important constraints for system design is
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that internal representations must be learnable, i.e., de-
signed such that they can be built up autonomously by
the robot. This philosophy is somewhere in between the
“classical” AI approach of highly sophisticated world
models and the absence of any internal representation
of the outside world (Brooks, 1991).

An important relative toGripSee is Cog (Brooks,
1997), a robot with a much more complete anthropo-
morphic body and with a more sophisticated behav-
ioral organization. We have concentrated on the per-
ceptual issues which we believe are indispensable for
useful interaction with the real world. This aspect of our
system is very similar to the one from (Tsotsos et al.,
1998). The behavioral organization is relatively simple
at the moment and will have to be improved once more
skills are active concurrently, e.g., along the lines of
(Crowley, 1995). Similar toCog, GripSeestill lacks
many features but shows good promise for extension.

A major feature of the research done in our group
is the focus on integration of various cues, behaviors
or modalities. In the domain of computer vision the
underlying concepts are Attributed Graph Matching
(Lades et al., 1993; Lourens and W¨urtz, 1998; Wiskott
et al., 1997), integration of multiple scales (W¨urtz,
1997; Würtz and Lourens, 1997), and integration of
multiple segmentation cues in a system of interact-
ing spins (Eckes and Vorbr¨uggen, 1996; Vorbr¨uggen,
1995). On the control side, the most important con-
cept is the autonomous refinement of rough prepro-
grammed schemas (Corbacho and Arbib, 1995; Zadel,
1999) by proprioception and autonomously acquired
visual information. Regarding software engineering,
the consistently object-oriented design of the FLAVOR
package (Rinne et al., 1998) developed at our insti-
tute has proved its power by allowing rapid integration
of different perceptual modules into a coherent sys-
tem. As a matter of fact, various modules had been
developed long before theGripSee project was con-
ceived, and were incorporated with amazingly few
difficulties.

Clearly, both the list of skills and the performance of
the perceptual modules will require considerable im-
provement before the goal of a perceptually guided
robot can be reached. Nevertheless, we claim that we
have taken a major step toward that end by supply-
ing several central perceptual and manipulatory skills
together with a convincing way of integration. A con-
siderable degree of autonomy has been demonstrated,
which will increase once visual and tactile feedback
are implemented. In detail, the following steps will be:

• integration of tactile sensors onto the gripper;
• autonomous learning of grips using tactile feedback;
• visual learning of the arm kinematics to improve

flexibility and robustness;
• more robust object localization and recognition by

consistent exploitation of disparity cues;
• grasping with real-time visual feedback (visual ser-

voing);
• imitation of trajectories or grips performed by the

operator;
• autonomous learning of an object representation

suitable for recognition and grasping;
• integration of readily available face recognition

(Lades et al., 1993; Wiskott et al., 1997) for operator
identification and authorization.

Beyond the implementation of the actual skills and
behaviors, we have demonstrated that our integration
concept constitutes a successful and promising stra-
tegy for learning in perceptual robots. This gives rise
to the hope forGripSeeto attain additional non-trivial
perceptual capabilities in the near future.
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Rolf P. Würtz obtained his Diploma in Mathematics from the
University of Heidelberg, Germany in 1986. After that, he was
research assistant at the Max-Planck-Institute for Brain Research
in Frankfurt, Germany. In 1990, he joined the Institute for Neuro-
computing at the University of Bochum, Germany, where he received
his Ph.D. from the Physics department in 1994. Until 1997, he was
a postdoctoral researcher at the department of Computing Science
at the University of Groningen, The Netherlands. He is currently
responsible for the GripSee project at the Institute for Neurocomput-
ing. Further research interests include neuronal models and efficient
algorithms for object recognition, hand-eye coordination, integration
of visual and tactile information, and links to higher cognition.

Stefan Zadelreceived the Diploma degree in Electrical Engineering
from the University of Stuttgart, Germany, in 1991. He then joined
the group for system biophysics of the Institute for Neurocomputing
at the University of Bochum, Germany, first as a Ph.D. student in
a fellowship program, then as research assistant. He worked on the
field of service robot grasping, especially the learning of grasps. In
1998 he joined the department of process development of Daimler-
Chrysler at Stuttgart.


