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Summary. An important requirement for the expression of cognitive structures is
the ability to form mental objects by rapidly binding together constituent parts. In
this sense, one may conceive the brain’s data structure to have the form of graphs
whose nodes are labeled with elementary features. These provide a versatile data
format with the ability to render the structure of any mental object. Because of
the multitude of possible object variations the graphs are required to be dynamic.
Upon presentation of an image a so-called model graph should rapidly emerge by
binding together memorized subgraphs derived from earlier learning examples driven
by the image features. In this model, the richness and flexibility of the mind is made
possible by a combinatorial game of immense complexity. Consequently, emergence
of model graphs is a laborious task which, in computer vision, has most often been
disregarded in favor of employing model graphs tailored to specific object categories
like faces in frontal pose. Invariant recognition or categorization of arbitrary objects,
however, demands dynamic graphs.

In this work we propose a form of graph dynamics which proceeds in three steps. In
the first step position-invariant feature detectors, which decide whether a feature is
present in an image, are set up from training images. For processing arbitrary objects
these features are small regular graphs, termed parquet graphs, whose nodes are
attributed with Gabor amplitudes. Through combination of these classifiers into a
linear discriminant that conforms to Linsker’s infomax principle a weighted majority
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voting scheme is implemented. This network, termed the preselection network, is well
suited to quickly rule out most irrelevant matches and only leaves the ambiguous
cases, so-called model candidates, to be processed in a third step using a rudimentary
version of elastic graph matching, a standard correspondence-based technique for
face and object recognition. To further differentiate between model candidates with
similar features it is asserted that the features be in similar spatial arrangement for
the model to be selected. Model graphs are constructed dynamically by assembling
model features into larger graphs according to their spatial arrangement. The model
candidate whose model graph attains the best similarity to the input image is chosen
as the recognized model.

We report the results of experiments on standard databases for object recognition
and categorization. The method achieved high recognition rates on identity, object
category, and pose, provided that individual object variations are sufficiently covered
by learning examples. Unlike many other models the presented technique can also
cope with varying background, multiple objects, and partial occlusion.

Key words: compositionality, model graphs, parquet graphs, position-invariant
feature detectors, infomax principle, preselection network, model candidates, emer-
gence of model graphs, elastic graph matching, feature- vs. correspondence-based
object recognition

1 Introduction

An important requirement for the expression of cognitive structures is the
ability to form mental objects by rapidly binding together constituent parts
[2, 3]. In this sense, one may conceive the brain’s data structure to have the
form of graphs whose nodes are labeled with elementary features.

This data format has been used for visual object recognition [30, 4, 5, 19],
and in the Dynamic Link Matching approach [37, 38, 39, 11, 47]. In all these
approaches the data structure of stored objects has the form of graphs whose
nodes are labeled with elementary features. These are called model graphs
and provide a view-tuned representation [23, 25] of the object contained in
the presented image. They provide a versatile data format with the capability
to render the structure of any object. Because of the multitude of possible
object variations like changes in identity, pose, or illumination, the graphs are
required to be dynamic with respect both to shape and attributed features.

Upon presentation of an image a so-called model graph should rapidly emerge
by binding together memorized subgraphs derived from earlier learning exam-
ples driven by the image features. Emergence of model graphs is a laborious
task which, in computer vision, has most often been disregarded in favor of
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employing model graphs tailored to specific object categories like faces in
frontal pose [11, 49, 47]. Recognition or categorization of arbitrary objects,
however, demands dynamic graphs, i.e., more emphasis must be laid on the
question of how model graphs are created from raw image data.

Relatively little work has been done on the dynamic creation of model graphs.
The object recognition system proposed in [40] is based on Dynamic Link
Matching supplied with object memory. While learning novel objects a so-
called fusion graph is created through iteratively matching image graphs with
the fusion graph and grafting non-matched parts of image graphs into the
fusion graph. When an object is to be recognized, one or more image graphs
are compared against model memory via graph matching, implemented by
dynamic links. The matching parts of the fusion graph thus constitute the
model graph for the object contained in the input image. The system has
proven to perform well for a small number of object views. During both learn-
ing and recognition the objects are required to be placed in front of a plain
background.

A different approach is the creation of model graphs with minimal user-
assistance [16]. In that method, a growing neural gas [8] is used to determine
shape and topology of a model graph. Binarized difference images derived
from two consecutive images of the same moving object are used as an input
to a growing neural gas, whose nodes are attracted to superthreshold frame
differences. Upon a user-initiated event, Gabor jets are extracted at the node
positions and the produced model graph is stored in a model database. Dur-
ing recognition, model graphs are matched in succession with the input image.
The compositional aspect is thus prominent while learning novel objects but
is absent during recognition. A rudimentary version of model graph dynamics
is also present in [49], where model graphs are adapted to segmentation masks
in order to ignore background influences.

In [41] a system is proposed that creates an object model in a probabilistic
framework. The technique uses mixtures of collaborating probabilistic object
models, termed components. Highly textured regions, so-called parts, are em-
ployed as local features. They are automatically extracted from earlier learning
images. Each component is an expert for a small ensemble of object parts. In
order to describe an object in an image several components need to be active.
Model parameters, the parameters of the incorporated probability densities,
are iteratively learned using expectation maximization (EM). Categorization
of an object is based on the maximum a posteriori (MAP) decision rule: the
object in the input image is supposed to belong to the category whose object
model attained maximal a posteriori probability. In [6] a similar method is
proposed which is able to categorize objects from few learning examples.

In [31] a graph dynamics is employed for object tracking. It is formulated
in a maximum a posteriori framework using a hidden Markov model: the



4 Günter Westphal, Christoph von der Malsburg, and Rolf P. Würtz

tracker estimates the object’s state, expressed by a model graph, through
maximization of a posterior probability. New features are added to the model
graph if they can reliably be observed in the hidden Markov model’s time
window. Similarly, repeatedly non-matching features are removed from the
model graph.

Recognition methods relying on graph matching are correspondence-based in
the sense that image point correspondences are estimated before recognition
is attempted. This estimation is usually only possible on the basis of the
spatial arrangement of elementary features. There is also a class of recognition
algorithms which are purely feature-based and completely disregard feature
arrangement. A prominent example is SEEMORE [18]. There it is shown that
a simple neural network can distinguish objects in a purely feature-based
way if enough feature types are employed. As a model for recognition and
categorization in the brain feature-based methods can be implemented as
feedforward networks, which would account for the amazing speed with which
these processes can be carried out, relative to the slow processing speed of
the underlying neurons [33, 34]. These methods, however, encounter problems
in the case of multiple objects and highly structured backgrounds. From the
point of view of pattern recognition, feature-based methods are discriminative
while graph matching is generative [35].

It is reasonable to assume that feedforward processing is applied as far as
it goes by excluding as many objects as possible and that only ambiguous
cases are subjected to correspondence-based processing, which is more time-
consuming.

In this chapter we propose a form of graph dynamics, which proceeds in
three steps. In the first step position-invariant feature detectors, which decide
whether a feature is present in an image, are set up from training images.
For processing arbitrary objects, features are small localized grid graphs, so-
called parquet graphs, whose nodes are attributed with Gabor amplitudes.
Through combination of these classifiers into a single layer perceptron that
conforms to Linsker’s infomax principle [14], the so-called preselection net-
work, a weighted majority voting scheme [12] is implemented. It allows for
preselection of salient learning examples, so-called model candidates, and like-
wise for preselection of salient categories the object in the presented image
supposedly belongs to. Each model candidate is verified in a third step using
a rudimentary version of elastic graph matching. To further differentiate be-
tween model candidates with similar features it is asserted that the features
be in similar spatial arrangement for the model to be selected. In this way
model graphs are constructed dynamically by assembling model features into
larger graphs according to their spatial arrangement (fig. 1). Finally, the re-
sulting model graphs are matched with a rudimentary version of elastic graph
matching, and the model candidate that yields the best similarity to the input
image is chosen as the recognized model (fig. 2).
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Model
Candidates

Model
Graphs

Image

Recon-
structions

Model

0.931
0.928

0.904
0.860

Fig. 2. Selection of the Model — Given the input image in the first column, the
preselection network selects four model candidates (second column). As has been il-
lustrated in fig. 1, a model graph is dynamically constructed for each model candidate
by assembling matching model features into larger graphs according to their spatial
arrangement (third column). The fourth column shows the reconstruction from each
model graph. Each model candidate is verified using a rudimentary version of elastic
graph matching. Model graphs are optimally placed on the object contained in the
input image in terms of maximizing the measure of similarity (third column). The
attained similarities between the model candidates, represented by their model graphs,
and the input image are annotated to the reconstructions. The model candidate that
yields the best similarity to the input image is chosen as the recognized model (fifth
column).

The description of the method is accompanied by a case study, which exempli-
fies the various steps on an example, in which only two images of two objects
are learned and distinguished.
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2 Learning Set, Partitionings, and Categories

There are many different classifications that can be made on image data.
For object recognition, all instances of the same object under different pose
and/or illumination are to be put into the same class. An alternative learning
problem may be the classification of illumination or pose regardless of object
identity. A hallmark of human visual cognition is the classification into cate-
gories: we group together images of cats, dogs, insects, and reptiles into the
category ‘animal’ and are able to differentiate animals from non-animals with
impressive speed [33].

Following [22] we use the term recognition for a decision about an object’s
unique identity. Recognition thus requires subjects to discriminate between
similar objects and involves generalization across some shape changes as well
as physical translation, rotation and so forth. The term categorization refers to
a decision about an object’s kind. Categorization thus requires generalization
across members of a class of objects with different shapes. Especially, the
system has to generalize over object identity.

We start by considering some finite set of images I and a subset D, which we
call the learning set. In our case study the learning set comprises two images
of different chewing gum packages in approximately the same pose (fig. 3).

D =

8>>>>>>>><>>>>>>>>:
I1

,

I2

9>>>>>>>>=>>>>>>>>;
Fig. 3. Case Study: Learning Set — The learning set comprises two images of
different chewing gum packages in approximately the same pose. The images are
taken from the COIL-100 database [21]. In the following these images are referred
to as I1 and I2.

In order to accommodate the various learning tasks that can be imposed on a
single image set we consider that there exist K partitionings Πk of the learning
set (1). A partitioning Πk consists of Ck pairwise disjoint partitions Ck

c .

Πk =
{

Ck
c ⊆ D

∣∣ 1 ≤ c ≤ Ck
}

with ∀c 6= c′ : Ck
c ∩ Ck

c′ = ∅ and
Ck⋃
c=1

Ck
c = D

(1)
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C1
1 =

8>>>>>>>><>>>>>>>>:
I1

9>>>>>>>>=>>>>>>>>;
C1

2 =

8>>>>>>>><>>>>>>>>:
I2

9>>>>>>>>=>>>>>>>>;
Fig. 4. Case Study: Partitioning of the Learning Set — In our case study there exists
only K = 1 partitioning Π1 of the learning set (fig. 3). The partitioning consists of
C1 = 2 single-element categories C1

1 = {I1} and C1
2 = {I2}.

The objects in the images of a particular partition are conceived to share a
common semantic property, for instance, being images of animals, or having
the same illumination direction. Accordingly, partitions in the following are
termed categories. Category labels c range between 1 and Ck; their range
implicitly depends on the number of categories in the underlying partitioning
Πk. For simultaneous recognition of the object’s identity and the object’s pose
the learning set is subdivided into single-element categories while for object
categorization purposes the learning set is usually organized in a hierarchy of
categories. In fig. 4 the single partitioning of the learning set in our case study
is shown.

A hierarchical categorization task can be exemplified with the ETH-80 image
database [13]. That database comprises images of apples, pears, tomatoes,
dogs, horses, cows, cups, and cars in varying poses and identities and has been
used for the categorization experiments in sect. 7.2. For those experiments we
created K = 3 partitionings of the learning set as shown in fig. 5.

3 Parquet Graphs

The feature-based part of the technique described in this paper can work
with any convenient feature type. A successful application employing color
and multiresolution image information is presented in [45]. For the current
combination of feature- and correspondence-based methods we chose small
regular graphs labeled with Gabor features. We call them parquet graphs in-
spired by the look of ready-to-lay parquet tiles. These can work as simple
feature detectors for preselection and be aggregated to larger graph entities
for correspondence-based processing.

Throughout this paper, parquet graphs are constituted out of V = 9 nodes.
In the following, a parquet graph f is described with a finite set of node
attributes: Each node v is labeled with a triple (xv,Jv, bv) where Jv is a Gabor
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natural man-made

object

fruit animal

apple pear tomato dog horse cow

cup car

cup car

2Π

1Π

3Π

Images

Fig. 5. Hierarchical Organization of Categories — A hierarchy of categories on
the ETH-80 image database [13], which contains images of apples, pears, tomatoes,
dogs, horses, cows, cups, and cars in varying poses and identities. We created K = 3
partitionings Π1, Π2, and Π3. Partitioning Π1 comprises C1 = 2 categories of natural
(C1

1) and man-made objects (C1
2). Partitioning Π2 comprises C2 = 4 categories

of fruits (C2
1), animals (C2

2), cups (C2
3), and cars (C2

4). Finally, partitioning Π3

comprises C3 = 8 categories of apples (C3
1), pears (C3

2), tomatoes (C3
3), dogs (C3

4),
horses (C3

5), cows (C3
6), cups (C3

7), and cars (C3
8).

jet derived from an image at an absolute node position xv. Computation
and parameters of the Gabor features is the same as in [11, 47]. In order to
make use of segmentation information it is convenient to mark certain nodes
as invalid and exclude them from further calculation in that way. For this
purpose the node attributes comprise the validity flag bv that can take the
values 0 and 1, meaning ‘invalid’ and ‘valid’. The horizontal and vertical node
distances ∆x and ∆y are set to 10 pixels in this work.

f = { (xv,Jv, bv)| 1 ≤ v ≤ V } (2)

In fig. 6 an example of a parquet graph that has been placed on the object in
learning image I1 is shown. Where appropriate, instances of parquet graphs
are, more generally, called features or feature instances.
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(a) (b) (c)

Fig. 6. Example of a Parquet Graph — Figure (a) shows a parquet graph that
has been placed on the object in learning image I1. Each node of a parquet graph
is attributed with Gabor amplitudes derived from an image at the node’s position.
Figure (b) shows the reconstruction from the parquet graph. Figure (c) is an enlarged
version of fig. (b). The reconstruction is computed with the algorithm from [24].

For selection of salient categories and model candidates, the feature-based
part of the proposed system, a parquet graph describes a patch of texture de-
rived from an image regardless of its position in the image plane. Particularly,
this means that the node positions are irrelevant for the decision whether
two images contain a similar patch of texture. Later, for verification of the
selected model candidates, i.e., learning images that may serve as models for
the input image, larger graphs are constructed dynamically by assembling
parquet graphs derived from earlier learning images according to their spatial
arrangement. Thus, within the correspondence-based part, the node positions
will become important.

3.1 Similarity Function

The measure of similarity between two parquet graphs f and f ′ is defined
as the normalized sum of the similarities between valid Gabor jets [49, 28]
attached to nodes with the same index that stem from the given parquet
graphs (4). Throughout this paper, the similarity between two Gabor jets is
given by the normalized scalar product between the absolute values of the
complex components of the two jets (3). Let an denote the absolute value of
n-th filter response.

sabs (J ,J ′) =
∑

n ana′n√∑
n a2

n

∑
n a′n

2
(3)

By definition, the factors (bvb′v) are 1 if the respective jets Jv and J ′v have
both been marked as valid, and 0 otherwise. Thus, these factors assert that
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only similarities between jets that have both been marked as valid are taken
into account. If all products become 0, the similarity between the two parquet
graphs yields 0.

sgraph (f, f ′) =


(

V∑
v=1

bvb′v

)−1V∑
v=1

(bvb′v)sabs (Jv,J ′v) if
V∑

v=1
bvb′v > 0

0 otherwise

(4)

From the viewpoint of the correspondence problem, two parquet graphs in
different images establish a local array of contiguous point-to-point corre-
spondences. The similarity measure assesses how well points in two images
specified by the given parquet graphs actually correspond to each other. It
is well worth noting that parquet graphs provide a means to protect from
accidentally establishing point-to-point correspondences in that contiguous,
topographically smooth fields of good correspondences are favored over good
but topographically isolated ones.

3.2 Local Feature Detectors

For the assessment whether two parquet graphs f and f ′ convey similar
patches of texture with respect to a given sensitivity profile we introduce
local feature detectors that return 1 if the similarity between the given par-
quet graphs is greater or equal than a given similarity threshold 0 < ϑ ≤ 1,
and 0 otherwise (5). We say that two parquet graphs match with respect to a
given similarity threshold if the local feature detector returns 1.

ε (f, f ′, ϑ) =
{

1 if sgraph (f, f ′) ≥ ϑ
0 otherwise (5)

Matching features are one argument for point-to-point correspondences, which
needs to be backed up by the spatial arrangement of several matching features.

4 Learning a Visual Dictionary

Our goal is to formulate a graph dynamics that, upon image presentation,
lets a model graph rapidly emerge by binding together memorized subgraphs
derived from earlier learning examples. To this end we need to compute a
repertoire of parquet graphs from learning examples in advance. These play
the role of a visual dictionary. Parquet graphs derived from an input image
during classification are looked up in the dictionary to find out which image
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and model features match. Each coincidence of a matching feature in the
image and model domain may then be accounted as a piece of evidence that
the input image belongs to the same categories as the learning image which
contains the model feature.

4.1 Feature Calculators

In (6) we define R functions fr capable of extracting a set of features out of an
image. In this work parquet graphs are exclusively used as local image features.
Let F denote the set of all possible features and let ℘ (F) denote the power
set of F. In the following these functions will be called feature calculators.
The index r implicitly specifies the parameterization of the parquet graphs
returned from the respective feature calculator fr, like the similarity threshold
ϑr, which is employed in the local feature detectors (5). Generally, feature
calculators are not restricted to parquet graphs; other feature types have been
used in [45, 27, 43, 1].

fr : I→ ℘ (F) with r ∈ {1, . . . , R} (6)

For extraction of parquet graphs, the inter-node distances ∆x and ∆y are also
used to specify a grid in the image plane. At each grid position allowing for
placement of a whole parquet graph, a parquet graph is extracted. Scanning
of the image starts in the upper left corner from left to right to the lower right
corner. If the image is known to be figure-ground segmented, parquet graphs
with the majority of nodes residing in the background will be disregarded, the
others have background points marked as invalid.

In the case study, we employ only R = 1 feature calculator f1. The feature
calculator returns a set of parquet graphs with ten pixels distance between two
neighbored nodes in horizontal and in vertical direction, respectively. In fig. 7
the result of consecutively applying this feature calculator to both learning
examples is shown.

4.2 Feature Vectors

Looking at the number of parquet graphs that have been extracted from
just two images (fig. 7), it is clear that for learning sets with thousands or
even ten thousands of images the total number of features would grow into
astronomical dimensions. Consequently, we have to limit the total number
of features to a tractable number. For this task we employ a simple variant
of vector quantization [9] given as pseudo code in fig. 8. A vector quantizer
maps data vectors in some vector space into a finite set of codewords, which
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,
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,
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,

(2,8)
,
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,
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,

(2,11)
,

(2,12)
,

(2,13)
,

(2,14)
,

(2,15)
,

(2,16)
,

(2,17)
,
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,
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,
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,
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9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
Fig. 7. Case Study: Application of the Feature Calculator to the Learning Images —
The thumbnail images in the returned sets on the right hand side are reconstructions
from the extracted parquet graphs. Each reconstruction is uniquely labeled with a
tuple. The first component addresses the learning image the parquet graph stems
from while the second component is a sequential number.
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Algorithm 1: vectorQuantization

Parameter : Learning Set: D
Parameter : Feature Calculator: fr : I→ ℘ (F)
Parameter : Similarity Threshold: ϑr; 0 < ϑr ≤ 1
Result : Feature Vector of Length T r: fr

Fr ← ∅1

T r ← 02

forall I ∈ D do3

forall f ∈ fr(I) do4

if ∀f ′ ∈ Fr : ε (f, f ′, ϑr) = 0 then5

Fr ← Fr ∪ {f}6

T r ← T r + 17

end8

end9

end10

fr =: (fr
t )1≤t≤T r ← (0)1≤t≤T r11

t← 012

forall f ∈ Fr do13

fr
t ← f14

t← t + 115

end16

return fr
17

Fig. 8. Vector Quantization Method — The algorithm computes a codebook of code-
words. In this work parquet graphs become employed as codewords while the codebook
is a set of these parquet graphs. The size of the feature set depends considerably on
the value of the similarity threshold ϑr. For lower values of ϑr many features will
be disregarded and the final feature set will become rather small. Conversely, higher
values of ϑr close to one lead to low compression rates and large feature sets.

are supposed to represent the original set of input vectors well. A collection
of codewords that purposefully represent the set of input vectors is termed
codebook. The design of an optimal codebook is NP-hard.

Using the vector quantization given in fig. 8, each of the R feature calculators
is used to compute a feature vector fr with r ∈ {1, . . . , R}. In the following
T r denotes the number of features in feature vector fr. All R feature vectors
constitute the visual dictionary. Let, as a shorthand, fr

t address the feature
with index t in the feature vector with index r, throughout.

In our case study, application of the vector quantization algorithm using fea-
ture calculator f1 with a similarity threshold of ϑ1 = 0.92 yields the result
presented in table 1. The table’s left column comprises parquet graphs that
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have been chosen as codewords while in the right column lists the disregarded
parquet graphs. The lower labels have been introduced in fig. 7, the upper
labels are the similarities between the disregarded parquet graph and the re-
spective codeword. The final feature vector f1 =

(
f1

t

)
1≤t≤8

comprises T 1 = 8
parquet graphs.

5 Preselection Network

In this section we will present the second step of the proposed form of graph
dynamics: a feedforward neural network that allows for preselection of salient
learning examples, so-called model candidates, and likewise for preselection of
salient categories the object in the presented image supposedly belongs to.
This network will be called the preselection network. Its design is motivated
by the well-established finding that individual object-selective neurons tend
to preferentially respond to particular object views [23, 15]. The preselection
network’s output neurons take the part of these view-tuned units.

The preselection network is a fully-connected single layer perceptron [26] that
implements a weighted majority voting scheme [12]. In the network’s input
layer position-invariant feature detectors submit their assessments whether
their reference feature is present in an image to dedicated input neurons while
the output layer comprises one neuron for each predefined category. Synap-
tic weights are chosen such that the network conforms to Linsker’s infomax
principle [14]. That principle implies that the synaptic weights in a multi-
layer network with feedforward connections between layers develop, using a
Hebbian-style update rule [10], such that the output of each cell preserves max-
imum information [29] about its input. Subject to constraints, the infomax
principle thus allows to directly assign synaptic weights. The time-consuming
adaption of synaptic weights becomes unnecessary at the expense of having to
set up the preselection network in batch mode, i.e., the complete learning set
has to be presented. This network setup in conjunction with the application
of the winner-take-most or winner-take-all nonlinearity as decision function
[25] implements a weighted majority voting scheme that allows for the desired
preselection of salient categories and model candidates.

Here, the selection of salient categories and model candidates is only based
on feature coincidences in image and model domain. As their spatial arrange-
ment is disregarded, false positives are frequent among the selected model
candidates. To rule them out similar spatial arrangement of features will be
asserted for the model to be selected in the correspondence-based verification
part (sect. 6).
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Table 1. Case Study: Computation of Feature Vector f1

Codewords Disregarded Features

f1
1 =

(1,1)

0.96

(1,2)

0.93

(1,3)

0.97

(1,12)

0.95

(1,13)

0.92

(1,14)

0.93

(1,22)

0.95

(2,1)

0.93

(2,12)

f1
2 =

(1,4)

0.97

(1,5)

0.97

(1,6)

0.96

(1,7)

0.94

(1,8)

0.95

(1,15)

0.93

(1,16)

0.93

(2,2)

0.94

(2,3)

0.94

(2,4)

0.93

(2,5)

0.93

(2,6)

0.93

(2,7)

0.92

(2,8)

0.92

(2,14)

0.93

(2,15)

0.93

(2,16)

0.92

(2,17)

0.92

(2,18)

f1
3 =

(1,9)

0.95

(1,10)

0.94

(1,19)

0.96

(1,20)

0.96

(2,9)

0.94

(2,10)

0.94

(2,19)

0.95

(2,20)

f1
4 =

(1,11)

0.94

(1,21)

0.94

(1,31)

0.97

(2,11)

f1
5 =

(1,17)

0.97

(1,18)

0.94

(1,24)

0.93

(1,25)

0.93

(1,26)

0.95

(1,27)

0.93

(1,28)

f1
6 =

(1,23)

0.93

(1,29)

0.92

(1,30)

0.93

(2,22)

0.94

(2,23)

f1
7 =

(2,13)

0.93

(2,24)

f1
8 =

(2,21)

0.96

(2,25)
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5.1 Neural Model

In the preselection network we employ two types of generalized McCulloch
& Pitts neurons [17], variant A with identity and variant B with a Heaviside
threshold function H(·) as output function. The output of a neuron of type
A is equal to the weighted sum of its inputs

∑N
n=1 xnwn with xn being the

presynaptic neurons’ outputs and the wn being synaptic weights. The output
of a neuron of type B is 1, if the weighted sum of its inputs is greater than 0,
and 0 otherwise.

5.2 Position-Invariant Feature Detectors

To test the presence of a particular feature from the visual dictionary, in the
following called reference feature, in an image we construct a position-invariant
feature detector out of local feature detectors (sect. 3.2). For this task, we
distribute instances of local feature detectors uniformly over the image plane.
For a given reference feature, combining the local feature detectors in a linear
discriminant yields a position-invariant feature detector that returns 1 if the
reference feature is observed at at least one position, and 0 otherwise (7). In
fig. 9 it is shown how a position-invariant feature detector is constructed for
a feature fr

t from the visual dictionary. For a given feature fr
t , the symbol τ r

t

denotes the respective position-invariant feature detector and τ r
t (I) its result.

We will say that a position-invariant feature detector τ r
t has found or observed

its feature fr
t in input image I if τ r

t (I) = 1. From now on, we use the term
feature detector only for the position-invariant version.

τ r
t : I→ {0, 1} ; τ r

t (I) = H

 ∑
f∈fr(I)

ε (f, fr
t , ϑr)

 (7)

For the sake of simplicity we regard the feature detectors as the perceptron’s
processing elements [26], rather than an additional layer.

Each time a feature detector has found its reference feature fr
t in the input

image, we add pairs of matching features (f, fr
t ) to a table, where f stems

from the input image. That table is used for efficient construction of image
and model graphs in the correspondence-based verification part (sect. 6). The
table is cleared before each image presentation.

Fmatch (I)← Fmatch (I) ∪
⋃

f∈fr(I)

{
(f, fr

t )
∣∣∣ ε (f, fr

t , ϑr) = 1
}

(8)
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Fig. 9. Position-Invariant Feature Detector — The position-invariant feature detec-
tor returns 1 if a given feature fr

t is present in image I, and 0 otherwise. At each
grid position allowing for placement of a whole parquet graph a local feature detector
is installed that compares the local graph with the reference feature fr

t . Technically,
this has been implemented by applying feature calculator fr to the given image I. If
the feature calculator returns a set of N parquet graphs {fn| 1 ≤ n ≤ N}, each local
feature detector compares its feature fn with the reference feature fr

t with respect
to similarity threshold ϑr. Then, each local feature detector passes its result into a
single layer perceptron with N input units of type A, one output unit of type B, and
feedforward connections of strength 1 between each input unit and the output neuron.
The net’s output is 1 if at least one of the local feature detectors has found its refer-
ence feature in the given image, and 0 otherwise. In this fashion, a position-invariant
feature detector is instantiated for each feature in the visual dictionary.

5.3 Weighting of Feature Detectors

From the example in table 1 it becomes clear that the feature detectors have
varying relevance for the selection of salient categories. In the following the
contributions of feature detectors to choosing salient categories are described
through measures of information. Shannon has defined information as the
decrease of uncertainty [29]. In this sense, a natural definition of the measures
of information is presented in (9). For a given feature detector τ r

t that has
found its reference feature fr

t in the input image and for a given partitioning
Πk, the information ir,k

t that feature detector contributes to the decision about
choosing categories of partitioning Πk is defined by the difference between the
largest possible amount of uncertainty and the feature detector’s amount of
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uncertainty encoded by the Shannon entropy Hr,k
t . P

[
Ck

c

∣∣ fr
t

]
describes the

conditional probability that the genuine category is Ck
c given that feature fr

t

has been observed. In this fashion measures of information are calculated for
all features in the visual dictionary with respect to all partitionings of the
learning set. Similar approaches are proposed in [36, 7].

ir,k
t = ln Ck −Hr,k

t = ln Ck +
Ck∑
c=1

P
[
Ck

c |fr
t

]
lnP

[
Ck

c |fr
t

]
(9)

For a given partitioning Πk, the measures of information range between 0 and
lnCk. If a feature occurs in all categories of that partitioning, the respective
feature detector cannot make a contribution and, accordingly, its measure
of information is 0. Conversely, if a feature occurs in only one category, the
respective feature detector contributes maximally; its measure of information
is ln Ck.

Assuming that all prior probabilities for choosing a category are the same,
the conditional probabilities P

[
Ck

c

∣∣ fr
t

]
are calculated through application of

Bayes’ rule (10). The nr
t (C) denote the total number of observations of feature

fr
t in the images of the parameterized category. For a given category Ck

c and
a given feature fr

t , we may interpret this probability as the frequency of that
feature among the categories of partitioning Πk. In table 2 the calculation of
measures of information in our case study is demonstrated.

P
[
Ck

c

∣∣ fr
t

]
=

nr
t

(
Ck

c

)
Ck∑

c′=1

nr
t

(
Ck

c′

) (10)

5.4 Neurons, Connectivity, and Synaptic Weights

The preselection network is a single-layer perceptron comprising a layer of
input and a layer of output neurons. In the network’s input layer, we assign
neurons of type A to the feature detectors. Thus, the network comprises Vin =∑R

r=1 T r input neurons. By definition, each input neuron passes the result
of its feature detector into the network. In the network’s output layer, we
assign neurons of type A to the predefined categories. Accordingly, the network
contains Vout =

∑K
k=1 Ck output neurons.

For fulfillment of the infomax principle, we define the synaptic weight wr,k
t,c

between the presynaptic neuron assigned to a feature detector τ r
t and the

postsynaptic neuron assigned to a category Ck
c as follows. Imagine that feature

fr
t can both be observed in the input image and in at least one image of

that category. Then, this may be considered as a piece of evidence that the
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Table 2. Case Study: Calculation of Measures of Information

Feature
Index (t)

Feature
(f1

t )
n1

t

`
C1

1

´
n1

t

`
C1

2

´
P

ˆ
C1

1

˛̨
f1

t

˜
P

ˆ
C1

2

˛̨
f1

t

˜
i1,1
t

1

(1, 1)

7 2 7
9

2
9

0.1634

2

(1,4)

7 12 7
19

12
19

0.035

3

(1,9)

4 4 1
2

1
2

0

4

(1,11)

3 1 3
4

1
4

0.1307

5

(1,17)

7 0 1 0 0.6931

6

(1,23)

3 2 3
5

2
5

0.0201

7

(2,13)

0 2 0 1 0.6931

8

(2,21)

0 2 0 1 0.6931

input image belongs to that category. Consequently, feature detector τ r
t should

contribute its quantitative amount of information ir,k
t to the output of the

postsynaptic neuron assigned to that category Ck
c . Conversely, if that category

contains only images in which that feature cannot be observed, the feature
detector should never be allowed to make a contribution at all.

Using this construction rule of synaptic weights, we define R×K matrices of
synaptic weights Wr,k: one matrix per feature vector/partitioning combina-
tion. For a given feature vector fr and a given partitioning Πk, weight matrix
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Fig. 10. Preselection Network — The preselection network is a fully-connected
single-layer perceptron. In its input layer neurons of type A have been assigned to the
feature detectors. Accordingly, the network comprises Vin =

PR
r=1 T r input neurons.

Each input neuron passes the binary result of its feature detector into the network.
In the network’s output layer neurons of type A have been assigned to the predefined
categories. Accordingly, the network contains Vout =

PK
k=1 Ck output neurons. The

synaptic weights wr,k
t,c are chosen in a way such that the whole network conforms

to Linsker’s infomax principle. The output of the postsynaptic neuron that has been
assigned to a given category Ck

c will be called the saliency of that category and is
denoted by sk

c (I).

Wr,k (11) is of dimensions (Ck × T r). That matrix comprises the synaptic
weights wr,k

t,c of the connections between the input neurons assigned to feature
detectors τ r

t and the output neurons assigned to categories Ck
c . The indices t

of the presynaptic neurons range between 1 and T r and the indices c of the
postsynaptic neurons between 1 and Ck.



22 Günter Westphal, Christoph von der Malsburg, and Rolf P. Würtz

W1,1 =

0@H

0@ X
I∈C1

c

τ1
t (I)

1A i1,1
t

1A
1≤c≤2
1≤t≤8

=

„
0.1634 0.035 0 0.1307 0.6931 0.0201 0 0
0.1634 0.035 0 0.1307 0 0.0201 0.6931 0.6931

«
=:

`
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t,c

´
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1≤t≤8

Fig. 11. Case Study: Weight Matrix — In our case study, feature vector f1 com-
prises eight features and the learning set has been partitioned into two categories.
Accordingly, weight matrix W1,1 is of dimensions (2× 8). The measures of infor-
mation can be looked up in table 2.

Wr,k =

H

 ∑
I′∈Ck

c

τ r
t (I ′)

 ir,k
t


1≤c≤Ck

1≤t≤T r

=:
(
wr,k

t,c

)
1≤c≤Ck

1≤t≤T r

(11)

In our case study, feature vector f1 comprises eight features and the learning
set has been partitioned into two categories. Accordingly, weights matrix W1,1

is of dimensions (2× 8). The matrix is shown in fig. 11.

5.5 Saliencies

The output of the postsynaptic neuron of a category Ck
c will be called the

saliency of that category and is denoted by sk
c (I). With respect to an input

image I, that saliency is defined as the sum of the measures of information
ir,k
t of those feature detectors τ r

t whose reference feature coincides in the input
image and in at least one image of category Ck

c . Thus, a saliency value is the
accumulated evidence contributed by these feature detectors: the more pieces
of evidence have been collected, the more likely the input image belongs to
that category. For each partitioning of the learning set we can calculate a
saliency vector sk of length Ck by summing up the matrix vector products
of the weight matrices Wr,k with the vector of feature detector responses
(τ r

t (I))1≤t≤T r over all feature R vectors in the visual dictionary (12). In fig. 10
the complete preselection network is shown.

sk : I→ RCk

; sk (I) =
R∑

r=1

Wr,k · (τ r
t (I))1≤t≤T r =:

(
sk

c (I)
)
1≤c≤Ck (12)
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5.6 Selection of Salient Categories and Model Candidates

For selection of salient categories for the input image I we apply a winner-
take-most nonlinearity as a decision rule [25]. For a given partitioning Πk the
set Γ k (I) comprises all categories of the partitioning with super-threshold
saliencies. The threshold is defined relative to the maximal saliency with a
factor θk with 0 < θk ≤ 1 (13), i.e., the θk are relative thresholds. For θk = 1
only the most salient category will be selected, the decision rule becomes the
winner-take-all nonlinearity.

Γ k (I) =
{

Ck
c ∈ Πk

∣∣ sk
c (I) ≥ θk max

1≤c′≤Ck

{
sk

c′ (I)
}}

(13)

A set of model candidates M (I) for an input image I, i.e., learning images of
objects that reasonably may become models for the object in the input image,
are calculated by set intersection on salient categories (14). The selected model
candidates will be passed to the correspondence-based verification part for
further selection.

M (I) =
⋂K

k=1

⋃
C∈Γ k(I)

C (14)

In fig. 12 the average numbers of model candidates in dependence on a rela-
tive threshold θ1 are given. The experiment was carried out with the object
recognition application proposed in sect. 7.1. The learning set comprised 5600
images taken from the COIL-100 database [21]. From these images K = 1
partitioning Π1 with C1 = 5600 single-element categories was created. We
learn that, on average, the preselection network favorably rules out most ir-
relevant matches, i.e., the average numbers of model candidates are small
relative to the total number of learning images, and that the average number
of model candidates grows rapidly with decreasing relative thresholds. The
average numbers of model candidates are, however, subjected to considerable
mean variations, especially for small values of θ1.

6 Verification of Model Candidates

Up to here, model candidates have been selected by set intersection on salient
categories (14). The categories’ saliencies as computed by the preselection
network are solely based on the detection of coincidental features in the model
and image domain. The spatial arrangement of features, parquet graphs in
our case, has been fully ignored, which can be particularly harmful in cases
of multiple objects or structured backgrounds.

In the following model candidates are further verified through asserting that
the features be in similar spatial arrangement for the model to be selected.
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Fig. 12. Average Number of Model Candidates in Dependence on a Relative Thresh-
old — The average number of model candidates in dependence on the relative thresh-
old θ1 is given. The experiment was carried out with the object recognition application
proposed in sect. 7.1.

More specifically, they are verified with a rudimentary version of elastic graph
matching [38, 11, 47], a standard correspondence-based technique for face and
object recognition. For each model candidate an image and a model graph
are dynamically constructed through assembling corresponding features into
larger graphs according to their spatial arrangement. For each model can-
didate the similarity between its image and model graph is computed. The
model candidate whose model graph attains the best similarity is chosen as
the model for the input image. Its model graph is the closest possible repre-
sentation of the object in the input image with respect to the learning set.

6.1 Construction of Graphs

Construction of graphs proceeds in three steps. First, from the table of match-
ing features (8) all feature pairs whose model feature stems from the current
model candidate are transferred to a table of corresponding features. Second,
templates of an image and of a model graph are instantiated with unlabeled
nodes. Number and positioning of nodes is determined by the valid nodes of
image and model parquet graphs. Third, at each node position, separately for
image and model graph, a bunch of Gabor jets is assembled whose jets stem
from node labels of valid-labeled parquet graph nodes located at that posi-
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tion. The respective nodes of the image or model graph become attributed
with these bunches.

Table of Corresponding Features

During calculation of the categories’ saliencies pairs of matching features have
been collected in a table of matching features Fmatch (I) (8). Given a model
candidate M ∈M (I) for the input image I (14), all feature pairs whose model
feature stems from M are transferred to a table of corresponding features
Fcorr (I,M), which will be used for efficient aggregation of parquet graphs into
larger model and image graphs. We assume that the table comprises N feature
pairs, a number that depends implicitly on the model candidate. Let f I

n denote
the image and fM

n the model parquet graph of the n-th feature pair. Note that
from now on we speak of corresponding rather than of matching parquet graphs
and assume that those graphs establish local arrays of contiguous point-to-
point correspondences between the input image and the model candidate.

Fcorr (I, M) =

(f I
n, fM

n

)
∈ Fmatch (I)

∣∣∣∣ 1 ≤ n ≤ N ∧

H

(
R∑

r=1

∑
f∈fr(M)

ε
(
f, fM

n , 1
))

= 1

} (15)

Nodes of parquet graphs are attributed with a triple consisting of an absolute
image position, a Gabor jet derived from an image at that position, and a
validity flag (sect. 3). For being able to globally address node label compo-
nents, the following notation is introduced: nodes of image parquet graphs
are attributed with triples

(
xI

n,v,J I
n,v, bI

n,v

)
where n specifies the feature pair

in the table of corresponding features and v specifies the node index. The
same notation is used for model parquet graphs, with a superscript M for
distinction.

f I
n =

{(
xI

n,v,J I
n,v, bI

n,v

)∣∣ 1 ≤ v ≤ V
}

fM
n =

{(
xM

n,v,JM
n,v, bM

n,v

)∣∣ 1 ≤ v ≤ V
} (16)

Graph Templates

First, templates of an image and of a model graph are instantiated without
node labels. Number and positioning of nodes are determined by the valid-
labeled nodes of image and model parquet graphs. Their positions are collected
in sets XI and XM , respectively. The creation of graph templates is illustrated
in fig. 13.
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XI =
⋃

n,v

{
xI

n,v

∣∣ bI
n,v = 1

}
XM =

⋃
n,v

{
xM

n,v

∣∣ bM
n,v = 1

} (17)

Node Labels

The nodes of model and image graphs become attributed with bunches of
Gabor jets: nodes of image graphs become labeled with bunches of Gabor jets
that stem from node labels of valid-labeled nodes of image parquet graphs
located at a given position x in the input image. Nodes of model graphs are
just the same attributed with bunches of jets that stem from node labels of
valid-labeled nodes of model parquet graphs located at a given position x
in the model candidate. Let βI (x) denote a bunch assembled at an absolute
position x in the input image. The same notation is used for the model graph’s
bunches, with a superscript M for distinction. Whenever possible we omit the
position x and write βI and βM instead. The assembly of Gabor jets into
bunches is also illustrated in fig. 13.

βI (x) =
⋃

n,v

{
J I

n,v

∣∣xI
n,v = x ∧ bI

n,v = 1
}

βM (x) =
⋃

n,v

{
JM

n,v

∣∣xM
n,v = x ∧ bM

n,v = 1
} (18)

For the assessment whether a point in the image corresponds to a point in the
model candidate a measure of similarity between two bunches is needed. The
similarity between two bunches is defined as the maximal similarity between
the bunches’ jets, which is computed in a cross run. If one of the bunches is
empty the similarity between them yields 0. The jets are compared using the
similarity function given in (3), which is based on the Gabor amplitudes.

sbunch (β, β′) =

{
0 if β = ∅ ∨ β′ = ∅

max
J∈β,J ′∈β′

{sabs (J ,J ′)} otherwise (19)

Graphs

Like parquet graphs, image and model graphs are specified by a set of node
labels. Node labels comprise an absolute position in the input or model image
drawn from the sets of node positions (17) and the bunch assembled at that
position (18). The image graph is decorated with a superscript I while the
model graph receives a superscript M .

GI =
⋃

x∈XI

{(
x, βI (x)

)}
GM =

⋃
x∈XM

{(
x, βM (x)

)} (20)
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Model Candidate

(a)

Model Candidate

(b)

Fig. 13. Construction of Model Graphs — Figure (a) provides a side, fig. (b)
a top view of the same setup. For clarity, both figures show only two overlapping
model parquet graphs fM

1 and fM
2 drawn from the table of corresponding features.

For illustration of the overlap the graphs are drawn in a stacked manner. Number
and position of the model graph’s nodes are determined by the valid-labeled model
parquet graph nodes (green nodes). Nodes that reside in the background have been
marked as invalid (red nodes). In fig. (b) the shape of the emerging model graph
can be foreseen. Compilation of bunches is demonstrated with two bunches only.
Like stringing pearls, all valid Gabor jets at position xM

1 are collected into bunch
βM

`
xM

1

´
and those at positions xM

2 become assembled into bunch βM
`
xM

2

´
. From

fig. (a) we learn that bunch βM
`
xM

1

´
comprises two jets while bunch βM

`
xM

2

´
contains only one jet. Image graphs are constructed in the very same fashion.
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Model graphs of suited model candidates provide an approximation of the
object in the input image by features present in the visual dictionary. In fig. 2
a number of model graphs (third column) that have been constructed for the
input image given in the first column are given. The reconstructions from the
model graphs of the first two model candidates in column four demonstrate
that the emerged model graphs describe the object in the input image well.

The constructed graphs are to some extent reminiscent of bunch graphs
[46, 47]. Nevertheless, since they represent single model candidates we rather
speak of model instead of bunch graphs. It is, however, worthwhile mentioning
that the proposed procedure may as well serve for the construction of bunch
graphs. To this end the table of corresponding features has to provide feature
pairs of model candidates picked from a carefully chosen subset M̃ (I) of the
set of model candidates M (I). The alternative computation of the table of
corresponding features is given in (21). The graph construction procedure is
then as well applicable to the construction of bunch graphs.

Fbunch
corr

(
I, M̃ (I)

)
=
⋃

M∈M̃(I)
Fcorr (I, M) (21)

6.2 Matching

In order to assert that a constructed model graph represents the object in the
given image well in a coherent fashion it is matched with the input image. It
is moved as a template over the entire image plane in terms of maximizing
the similarity between model and image graph. This action can be compared
with the scan global move which is usually performed as the first step of
elastic graph matching [11, 47]. It is also very similar to multidimensional
template matching [49]. For each translation of the model graph the similarity
between model and image graph is computed. The translation vector that
yields the best similarity defines the optimal placement of the model graph
in the image plane. In the process, the model graph’s absolute node positions
are transformed into relative ones by subtracting a displacement vector t0

from the positions of the model graph’s nodes. That vector is chosen such
that after subtraction the smallest x and the smallest y coordinate become
zero. However, the y coordinate of the leftmost node is not necessarily 0. The
same is the case for the x coordinate of the uppermost node.

t0 =
(

min
n,v

{(
xM

n,v

)
x

}
,min

n,v

{(
xM

n,v

)
y

})>
(22)

The similarity between model and image graph with respect to a given trans-
lation vector t is defined as the average similarity between image and model
bunches.
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Input Image

Model Candidate

Fig. 14. Matching Setup — The setup consists of the input image, the model can-
didate, and the graphs constructed using the proposed method. For clarity, only two
pairs of corresponding parquet graphs have been taken from the table of correspond-
ing features. Parquet graph fI

1 corresponds to fM
1 and fI

2 corresponds to fM
2 . Like

in fig. 13, green nodes represent nodes that have been marked as valid and red nodes
represent nodes that have been marked as invalid for residing in the background.
Since only learning images provide figure-ground information, invalid nodes appear
only in the model parquet graphs. The compilation of bunches is illustrated for two
exemplary positions xI

1 and xI
2 in the input image and xM

1 and xM
2 in the model can-

didate. In order to find the object in the input image the model graph is iteratively
moved over the entire image plane and matched with the image graph.

s (I,M, t) =
∣∣∣GM

∣∣∣−1 ∑
(xM ,βM )∈GM

sbunch

(
βI
(
xM − t0 + t

)
, βM

)
(23)

In order to find the object in the input image the model graph is iteratively
translated about a displacement vector in the image plane so that the measure
of similarity between model and image graph becomes maximal. The model
graph moves to the object’s position in the input image. Let sbest (I,M) de-
note the similarity attained at that position. The displacement vectors t stem
from a set G of all grid points defined by the distances ∆x and ∆y between
neighbored parquet graph nodes (sect. 4).
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sbest (I,M) = max
t∈G

{
s (I,M, t)

}
(24)

6.3 Model Selection

For selection of the model, the most similar learning image for the given input
image, an image and a model graph are constructed for each model candidate.
The model candidate that attains the best similarity between its model and
image graph is chosen as the model for the input image.

Mbest = arg max
M∈M(I)

{
sbest (I,M)

}
(25)

In fig. 2 four model candidates (column two) have been computed for the
given input image (column one). The similarities attained through matching
image against model graphs are annotated to the reconstructions from the
model graphs (column four). Since the first model candidate yields the highest
similarity, it is chosen as the model for the object in the input image.

7 Experiments

We report experimental results derived from standard databases for object
recognition and categorization. The results are excerpted from [44].

7.1 Object Recognition

Object recognition experiments were conducted on the COIL-100 image
database [21]. That database contains images of 100 objects in 72 poses per
object, thus, 7200 image in total. We present the results of three experiments.
First, we investigated the recognition performance with respect to object iden-
tity and pose for input images containing a single object, second, we analyzed
the recognition performance for input images containing multiple objects, and
third, recognition performance was measured for images of partially occluded
objects.

Experimental results were attained in a fivefold cross-validation [48]. We thus
created five pairs of disjoint learning and testing sets from all COIL-100 im-
ages. The learning sets comprise 56, the testing sets 14 views per object, thus,
5600 or 1400 images in total, respectively. The object recognition application
is designed to simultaneously recognize the object’s identity and pose. This is
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achieved by creating K = 1 partitioning of the learning set. That partition-
ing consists of single-element categories. Moreover, from each learning set a
visual dictionary with R = 2 feature vectors of increasing length was calcu-
lated using similarity thresholds of ϑ1 = 0.9 and ϑ2 = 0.95 (Algorithm 1).
Sorting feature vectors according to detailedness is harnessed in a procedure
that allows for accelerated search of features in a coarse-to-fine fashion. [44].
Computation and parameters of the Gabor features are the same as in [11, 47],
i.e., five scales, eight orientations, kmax = π

2 , kstep =
√

2, and σ = 2π. For
this parameterization, the horizontal and vertical node distances ∆x and ∆y
are set to 10 pixels.

In the following we present recognition results computed within the cross-
validation and their dependence on relative weighting of the feature- and
correspondence-based parts. Each data point was averaged over 5 × 1400 =
7000 single measurements. Weighting of the feature- and correspondence-
based part is controlled by the threshold scaling factor θ1 (13) that ranges
between 0.1 and 1, sampled in 0.1-steps. θ1 determines the final number of
model candidates that are passed to the correspondence-based verification
part. For θ1 = 1 only one model candidates is selected while for low values
the set of model candidates encompasses large portions of the learning set.
That factor thus enables us to adjust the balance between the feature- and
correspondence-based parts.

Recognition of Single Objects

In the first experiment we presented images containing a single object and
pose. We analyzed the system’s performance for each of the combinations
segmented/unsegmented images and preselection network conforming/non-
conforming to the infomax principle (sect. 5). The experiment was subdivided
into eight test cases. In the first four test cases the recognition performance
with respect to object identity was evaluated for each of these combinations
while the system’s ability to recognize the objects’ poses was investigated in
the remaining four test cases. Since the images of the COIL-100 database are
perfectly segmented, the unsegmented images have been manually created by
pasting the object into a cluttered background consisting of arbitrarily chosen
image patches of random size derived from the other test images of the current
testing set. In fig. 15 an example of a segmented and of an unsegmented image
is given. In order to asses the usefulness of the choice of synaptic weights
according to (11) the preselection networks are made incompatible to the
infomax principle by putting their weights out of tune using (26). Choosing
the synaptic weights in this fashion the saliencies become simple counters of
feature coincidences, the weighted majority voting scheme degenerates to a
non-weighted one.
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(a) (b)

Fig. 15. Input Images of a Single Object — The figure shows an object from the
COIL-100 database [21] as (a) segmented and (b) unsegmented image. Since the
images of that database are perfectly segmented, the unsegmented images have been
manually created by pasting the object contained in the segmented image into a clut-
tered background consisting of arbitrarily chosen image patches of random size de-
rived from the other test images of the current testing set. This is the worst back-
ground for feature-based systems.

Ŵr,k =

H

 ∑
I′∈Ck

c

τ r
t (I ′)


1≤c≤Ck

1≤t≤T r

=:
(
ŵr,k

t,c

)
1≤c≤Ck

1≤t≤T r

(26)

The recognition performance with respect to object identity is shown in
fig. 16 (a). We considered the object in the test image to be correctly rec-
ognized if test and model image showed the same object regardless of its
pose. Throughout, better recognition rates were attained if segmented images
were presented. Moreover, the infomax principle always slightly improved per-
formance where that improvement is, however, continually exhausted in grad-
ually putting more and more emphasis on the correspondence-based part, i.e.,
the achieved improvement is continually used up while moving from the left
to the right hand side in fig. 16. Most interestingly, a well-balanced combi-
nation of the feature- and correspondence-based parts led to optimal perfor-
mance, throughout. Only for such well-balanced combinations the selection
of model candidates is optimally carried out in the sense that neither too
few nor too many learning images become chosen as model candidates. If
the number of model candidates is too small, the spectrum of alternatives
the correspondence-based part can choose from becomes too limited. This is
especially harmful, if false positives are frequent among model candidates.
Conversely, the number of false positives among model candidates unavoid-
ably increases with overemphasis of the correspondence-based part: for too
low values of the relative threshold even learning images of weakly salient
categories become selected as model candidates. Accordingly, the probability
of choosing a false positive as the final model increases, the average recog-
nition rate decreases. The same findings hold true for the performance with
respect to object pose given in fig. 16 (b). The average pose errors were cal-
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culated over the absolute values of angle differences of correctly recognized,
non-rotation-symmetric objects. Note that two consecutive learning images of
the same object are at least five degrees apart.

Recognition of Multiple Objects

The second experiment is concerned with the recognition of multiple, simulta-
neously presented, non-overlapping objects, i.e., input images showed simple
visual scenes. Only the recognition performance with respect to object iden-
tity was evaluated. The experiment was subdivided into six test cases. In the
first three test cases we simultaneously presented N ∈ {2, 3, 4} objects placed
in front of a plain black background while in the last three test cases cluttered
background was manually added. The procedure of background construction
was the same as in the first experiment. In fig. 17 two images containing
four objects with and without background are shown. Objects were randomly
picked, a test image contained only different ones, and each object appeared
at least once. In a test case 1400 input images were presented. The system
returned the N most similar models. Each coincidence with one of the pre-
sented objects was accounted as a successful recognition response. The average
recognition rates were calculated over all responses.

The result of this experiment is given in fig. 17. We learn that, compared to the
single-object experiments, the point of optimal recognition performance con-
siderably moved to the right: putting more emphasis on the correspondence-
based verification part improved recognition performance. Presentation of seg-
mented images yielded better results. For both segmented and unsegmented
images the system’s performance degraded smoothly with the number of si-
multaneously presented objects. However, overemphasis of that part caused
by too small values of the relative threshold θ1 again led to a decrease in
recognition performance. This phenomenon can be observed in the test cases
with unsegmented images (fig. 18 (b)).

Recognition of Partially Occluded Objects

While in the second experiment the objects were presented in a non-overlap-
ping manner, the third and last experiment is concerned with the recog-
nition of partially occluded objects with respect to the same weightings of
the feature- and correspondence-based parts as in the first two experiments.
Again, we only evaluated recognition performance with respect to object iden-
tity. The experiment is subdivided into twelve test cases. In the first six test
cases we simultaneously presented two objects where 0-50% of the object on
the left was occluded by the object on the right. Occluded and occluding ob-
jects were different and randomly picked, each object appeared at least once
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Fig. 16. Recognition of Single Objects — The figure shows the recognition perfor-
mance with respect to (a) object identity and (b) object pose depending on relative
weighting of the feature- and correspondence-based parts controlled by θ1. This pa-
rameter determines the final number of model candidates that are passed to the
correspondence-based verification part. The best results are annotated to the respec-
tive data points. The results were better for segmented images. Optimal performance
was attained by satisfying the infomax principle and for a well-balanced combination
of the feature- and correspondence-based parts.
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(a)

(b)

Fig. 17. Input Images of Multiple Objects — The figure shows an example of (a) a
segmented and (b) an unsegmented input image containing four objects drawn from
the COIL-100 database [21]. Backgrounds were constructed in the same fashion as
in the first experiment.

as occluded. In the last six test cases cluttered background was added. The
procedure of background construction and accounting of recognition responses
was the same as in the second experiment. In fig. 19 input images of partially
occluded objects are shown. In fig. 20 the average recognition rates are given.

Like in the second experiment, we learn from the results presented in fig. 20
that emphasis of the correspondence-based part improved recognition perfor-
mance. Again, overemphasis of that part led to a decline. Moreover, presen-
tation of segmented images yielded better results. For segmented (fig. 18 (a))
and unsegmented images (fig. 18 (b)) the system’s performance smoothly de-
graded with the amount of occlusion.

Discussion

Our system performed favorably compared with other techniques. The original
system of Murase & Nayar [20], that performs a nearest neighbor classification
to a manifold representing a collection of objects or class views, attained
a recognition rate of 100% for segmented images of single unscaled objects
drawn from the COIL-100 database. Our system attained a recognition rate
of 99.13% in the same test case (sect. 7.1). The recognition performance of the
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95,21
92,60

91,66

0

10

20

30

40

50

60

70

80

90

100

0,00,10,20,30,40,50,60,70,80,91,0

R
ecognition [%

]

2 Objects

3 Objects

4 Objects

(a)

75,93

70,37

67,61

0

10

20

30

40

50

60

70

80

90

100

0,00,10,20,30,40,50,60,70,80,91,0

R
ecognition [%

]

2 Objects

3 Objects

4 Objects

(b)

Fig. 18. Recognition of Multiple Objects — The figure shows the recognition perfor-
mance with respect to object identity in the case of multiple non-overlapping objects,
(a) for segmented, (b) for unsegmented images. Compared to the first experiment,
the point of optimal recognition performance has considerably moved to the right:
correspondence-based verification is more important in the case of multiple objects.
Overemphasis of the correspondence-based verification part, however, led to a decline.
Presentation of segmented images yielded better results. Performance smoothly de-
graded with the number of simultaneously presented objects.
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(a) (b)

Fig. 19. Input Images of Partially Occluded Object — The figure shows (a) a
segmented and (b) an unsegmented input image of partially occluded objects. The
procedure of background construction was the same as in the first experiment. In this
example, the occluding object covers about fifty percent of the occluded object.

Murase & Nayar system is, however, unclear if it would be confronted with
more sophisticated recognition tasks, for instance, images with structured
backgrounds, with multiple objects, or with occluded objects.

Wersing & Körner [42] compared the performance their system of setting up
the feature extraction layers in an evolutionary fashion with the Murase & Na-
yar system. They conducted their experiments on the COIL-100 database. In
the case of segmented images their system and ours performed about equally
well, see fig.4 (b) in [42] and fig. 16 (a): both systems achieved recognition
rates above 99%.

In the case of unsegmented images our system outperformed the system of
Wersing & Körner, see fig.6 (a) in [42] and fig. 16 (a): our system attained
a recognition rate of 92.25% while the system of Wersing & Körner peaked
slightly below 90%. It is, however, worth mentioning that the experimental
setting differed considerably. Wersing & Körner performed their experiment
on the first 50 objects of the COIL-100 database and constructed structured
backgrounds out of fairly big patches of the remaining 50 objects. In contrast,
we conducted the experiment on all objects and pasted them into a cluttered
background consisting of arbitrarily chosen image patches of random size de-
rived from the other test images.

As has been documented in the second and third experiment, our system
provides a straightforward manner to analyze visual scenes with structured
background. In this respect, we cannot compare our system to the ones by
Murase & Nayar and Wersing & Körner, respectively.

7.2 Object Categorization

Object categorization experiments were conducted on the ETH-80 image
database [13]. That database contains images of eight categories namely ap-
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Fig. 20. Recognition of Partially Occluded Objects — The figure shows the recog-
nition performance with respect to object identity in the case of partially occluded
objects, (a) for segmented, (b) for unsegmented images. Like in the second exper-
iment, emphasis of the correspondence-based verification part improved recognition
performance, overemphasis of that part led to a decline. Presentation of segmented
images yielded better results. The system’s performance smoothly degraded with the
amount of occlusion.
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ples, pears, tomatoes, dogs, horses, cows, cups, and cars of ten identities per
category and 41 images in different poses per identity. The databases thus
consists of 3280 images in total. An interesting question with respect to ob-
ject categorization is whether a given hierarchical organization of categories
can be harnessed to improve categorization performance. The question how
such a hierarchical organization is learned is however not addressed here. We
present the results of two experiments. First, we evaluated categorization per-
formance if the decision about the final category relies on a given hierarchical
organization of categories. We employed the hierarchy given in fig. 4. Second,
we evaluated categorization performance if no such hierarchy is given.

Categorization of Objects Using Hierarchically Organized
Categories

Results of the first experiment were attained in a leave-one-object-out cross-
validation [48]. This means that the system was trained with the images of 79
objects and tested with the images of one unknown object. We thus created
80 pairs of learning and testing sets. The learning sets contained 3239, the
testing sets 41 images. We hierarchically organized the images into categories
of K = 3 partitionings as given in fig. 4. The threshold scaling factors θk for
selection of salient categories of partitionings Πk, k ∈ {1, 2, 3}, were all set to
0.4 (13). The parameterization of parquet graph features was the same as in
the object recognition experiments. For partitionings Π1 and Π2 we considered
an object to be correctly categorized if exactly one category out of these was
selected as salient and the presented object belonged to that category. For
partitioning Π3 a set of model candidates was calculated by set intersection
of salient categories (14). The model candidates of that set were passed to the
correspondence-based verification part. We considered the presented object
to be correctly categorized if it belonged to the same of the original eight
categories as the object in the model image.

In fig. 21 the averaged categorization rates computed within the leave-one-
object-out cross-validation broken down into the original eight categories of
apples, pears, tomatoes, dogs, horses, cows, cups, and cars are displayed. Each
data point was averaged over 10× 41 = 410 single measurements. Generally,
categorization performance depended considerably on the sampling of cate-
gories. In this sense the system categorized apples, pears, and tomatoes well
but obviously experienced difficulties in categorizing cows, dogs, horses, cars,
and cups. The intra-category variations among the identities within these
categories are too large. It is thus reasonable to assume that categorization
performance may be improved by adding more learning examples to those
categories. Moreover, the feature-based part’s ability to unambiguously as-
sign the object contained in the input image to the categories of partitionings
Π1 and Π2 is obviously limited. This deficiency is especially prominent in the
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Fig. 21. Categorization of Objects Using Hierarchically Organized Categories —
The averaged categorization rates computed within the leave-one-object-out cross-
validation are displayed. Each data point was averaged over 410 single measurements.
Categorization performance depended considerably on the sampling of categories. The
feature-based part’s ability to unambiguously assign the object in the input image to
the categories of partitionings Π1 and Π2 is obviously limited. For most cases, the
correspondence-based verification part was able to compensate for this shortcoming,
but not for the shortage of learning examples, especially in the animal categories.

results attained for the categorization of pears, cars and cups. Due to the im-
balance between natural and man-made objects, the attained results for cars
and cups are even worse than those for pears. The correspondence-based veri-
fication part was to some extent able to compensate for this shortcoming and
improved categorization performance for apples, pears, tomatoes, cars, and
cups. However, the shortage of learning examples, especially in the animal
categories, can only be cured by additional training images.

Categorization of Objects Using Single-Element Categories

For evaluation of the system’s performance without predefined hierarchical
organization of categories we arranged the learning set into K = 1 partitioning
of single-element categories. We considered the object in the input image to
be correctly categorized if it belonged to the same original category of apples,
pears, tomatoes, cows, dogs, horses, cars, or cups as the object in the model
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image. The attained results depending on θ1 are given in fig. 22. For clarity
the curves are distributed over two subfigures. All other parameters were the
same as above.

As in the object recognition experiments, a well-balanced combination of the
feature- and the correspondence-based parts allowed for optimal categoriza-
tion performance. The expectation that categorization performance would
benefit from hierarchical organization of categories could not be substanti-
ated. In the case of apples, tomatoes, cows, horses, cars, and cups average
categorization performance was considerably better without hierarchy. Only
for pears and dogs categorization could benefit slightly.

The categorization rates are below or close to those presented in [13]. That
object categorization system, however, integrates color, texture, and shape
features while our system only relies on local texture information. At least
the feature-based part of the technique described in this paper can work with
any convenient feature type [45]. One can thus expect to further improve
categorization performance if more feature types become incorporated.

In fig. 23 a confusion matrix of the categorization performance in the case of
single-element categories and optimal weightings of the feature- and corres-
pondence-based parts is given. The optimal weightings were category-specific
(fig. 22). Categorization performance depended considerably on the degree of
intra-category variations: for categories with relatively small intra-category
variations, for instance, the categories of fruits, cups, and cars, the sys-
tem performed well while the system’s performance degraded in a remark-
able fashion when confronted with images of categories with larger varia-
tions among category members. This is especially prominent for the ani-
mal categories. The system performed particularly poorly for the category
of dogs. However, in 75.12% (10.00% + 29.27% + 35.85%) of all cases the
system assigned an input image of a dog to the category of animals vs.
80.00% in the hierarchical case (fig. 21). Images of horses and cows were
assigned to that category in 84.87% and 86.10% of all cases in the non-
hierarchical case vs. 80.98% and 79.02% in the hierarchical case, respectively.
In sum, 82.03% of all cases input images of animals were correctly assigned
to the category of animals in the non-hierarchical case while that number
was 80.00% = (79.02% + 80.00% + 80.98%) /3 with hierarchical organization
of categories. These results once more confirm our statement that the data
is much too sparse to make the fine distinctions between the categories of
partitioning Π3.

Discussion

Much work remains to be done on the categorization capabilities. In our exper-
iment we have seen that the categories employed by human cognition were not



42 Günter Westphal, Christoph von der Malsburg, and Rolf P. Würtz
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Fig. 22. Categorization of Objects Using Single-Element Categories — The averaged
categorization rates within the leave-one-object-out cross-validation are displayed.
Each data point was averaged over 410 single measurements. Optimal categoriza-
tion performance was achieved for a well-balanced combination of the feature- and
correspondence-based parts. In most cases categorization performance was clearly
better than in the hierarchical case.



Feature-Driven Emergence of Model Graphs 43

0,49 2,68

0,490,491,71

0,73 0,49 0,49 0,49 0,24

0,73

0,24

0,24

2,932,44

2,20

0,98

0,24

0,24

0,49

49,76

57,80
20,00 5,37

6,10

6,59
80,98

98,05

3,6616,3415,61

29,27

35,85

11,4610,00

6,1012,20

4,887,56

3,66

95,12

3,90

4,88

87,80

8,05
91,22

3,90

4,88

Category of Input Image

C
at

eg
or

y 
of

 M
od

el
 Im

ag
e

Fig. 23. Confusion Matrix of Categorization Performance — A confusion matrix
of the categorization performance in the case of single-element categories and opti-
mal weightings of the feature- and correspondence-based parts is given. The optimal
weightings were category-specific (fig. 22). The axes are labeled with the categories of
the ETH-80 database [13], symbolized by images of arbitrarily chosen representants.
The horizontal axis codes the categories of the object in the input images while the
vertical axis codes the categories of the object in the model images. The given catego-
rization rates are relative to the categories of the object in the input images. In each
column they sum up to 100%. In order to improve readability, blobs were assigned
to the categorization rates whose surface areas scale proportionally with the amount
of their associated categorization rates.

helpful to improve the categorization capability when employed to structure
the recognition process. This finding is, however, compatible with experimen-
tal results which find that in human perception recognition of a single object
instance precedes categorization [22].



44 Günter Westphal, Christoph von der Malsburg, and Rolf P. Würtz

Another reason for the relatively poor performance is that in some cases the
data was much too sparse to really cover the intra-category variations: if the
variations across category members were poorly sampled, categorization failed
frequently for input images supposed to be assigned to these categories. For in-
stance, the system performed poorly for the animal categories, but categorized
input images of fruits well. Categorization can always be improved by using
additional cues like color and global shape. This hypothesis is substantiated
by the experimental results given in [13].

As model graphs only represent a single object view they cannot possibly
cover larger spectra of individual variations among category members. In this
respect bunch graphs provide a more promising concept. As briefly mentioned
in sect. 6, the graph dynamics is able to construct bunch graphs provided
that the model features stem from carefully chosen model candidates. It is
reasonable to assume that categorization performance can further be improved
by using bunch graphs instead of model graphs.

8 Summary and Future Work

We have presented an algorithm that employs a combination of rapid feature-
based preselection with self-organized model graph creation and subsequent
correspondence-based verification of model candidates. This hybrid method
outperformed both purely feature-based and purely correspondence-based ap-
proaches.

As an intermediate result the system also produces model graphs, which are
the closest possible representations of a presented object in terms of memo-
rized features. A variety of further processing can build on these graphs. The
simple graph matching employed here can be replaced by the more sophisti-
cated methods from [11, 47, 32], which should lead to increased robustness
under shape and pose variations.

In the present state, the method can also be used for the purposeful initial-
ization of sophisticated but slow techniques. For instance, it can produce a
coarse pose estimation followed by refinement through correspondence-field
evaluation. Another promising extension will be to use diagnostics from the
classification process for novelty detection and subsequent autonomous learn-
ing.

Much work remains to be done on the categorization capabilities. In our exper-
iment we have seen that the categories employed by human cognition were not
helpful to improve the categorization capability when employed to structure
the recognition process. It is, however, compatible with experimental results,



Feature-Driven Emergence of Model Graphs 45

which find that in human perception recognition of a single object instance
precedes categorization [22].

Another reason for the relatively poor performance in categorization experi-
ments is that the data was much too sparse to really cover the intra-category
variations. Categorization can always be improved by using additional cues
like color and global shape. This would, however, also require larger databases,
because much more feature combinations would need to be tested. Neverthe-
less, the method presented here is well suited to accommodate hierarchical
categories. Their impact on categorization quality as well as methods to learn
the proper organization of categories from image data are subject to future
studies.
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