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Abstract— The already introduced Neural Map provides a
structural association for the building blocks of dynamically
generated object models. Its learning and recall procedures
are built upon the Growing Neural Gas algorithm, which
is highly parameterized. The values of these parameters are
obtained through a time-consuming empirical approach. In the
present work, we evaluate the use of optimization based on
Evolutionary Algorithms to simplify this task. This paradigm
delves into six different approaches given by the combination
of three fitness functions and two starting conditions. The
performance of the proposed optimization paradigm is cross-
validated with experiments on invariant object categorization
and recognition found in literature. The results show that the
empirically set parameter values can be successfully optimized
using this paradigm.

I. INTRODUCTION

Organic Computing attempts to create systems that self-
organize. This self-organization must be constrained by
environmental data and the desires of the designer. These
constraints can be fulfilled, but usually at the expense of
introducing new parameters to the system. In the present
work, we try to reduce the number of parameters of an
object categorization and recognition system by leaving the
optimal choice to an evolutionary algorithm. We show that
the resulting system is successful, even on a task for which
the parameters are not optimized.

A well-known class of algorithms for the self-organization
of data has been developed on the basis of Kohonen’s
self-organizing map [1], a neural network model motivated
by how visual, auditory, and other sensory information is
handled by separate parts of the cerebral cortex in the human
brain [2]. It maps high-dimensional vectors onto a graph with
a given topology.

An extension, the Neural Gas [3], also subjects the graph
topology to self-organization, leaving only the number of
graph nodes to be determined beforehand. The Growing
Neural Gas (GNG) algorithm [4], [5] goes one step further
and learns the topology of the graph from sample data. This
algorithm sequentially evaluates the samples’ information
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and locally adapts their approximated topology based on a
distance measure. Unfortunately, each of these extensions
increases the number of parameters of the algorithm. There
are a number of successful applications of the GNG [6],
[71, [8] but the parameter tuning for a new problem remains
awkward.

The Organic Computing approach to computer vision
requires self-organized learning and processing of image
features. Following this approach we have proposed the
Neural Map [9], a memory framework for visual object
categorization and recognition. It is composed of a GNG
network [4] and a classifier motivated by the population
coding and decoding processes of cortical neurons [10].
Its properties include the unsupervised structural association
of elementary image features that serve as components of
dynamically generated object models [11], and the use of this
structure for matching novel components. These features are
represented by patches of information derived from object
views of the ETH-80 image set [12]. During learning, the
relationships between a given set of image features extracted
from training object views are automatically established
through an unsupervised learning process according to their
similarity. Throughout recall, these relationships are ex-
ploited by the classifier in order to retrieve the best matching
model features for a given set of image features extracted
from a test object view.

The Neural Map’s learning procedure uses the GNG
algorithm to approximate the topology of the feature dis-
tribution. However, this algorithm is highly parameterized
and the selection of the parameter values considerably affects
its performance. Currently, they are determined empirically
based on the parameter values proposed in [13] together with
the ones resulting from preliminary experiments, which apply
the GNG algorithm to a subset of the ETH-80 image set.
This selection mechanism is time consuming and requires
prior knowledge about the feature distribution. Furthermore,
its resulting values potentially lead to suboptimal solutions.
Consequently, a more robust selection mechanism is required
in the Neural Map’s learning procedure.

Evolutionary Algorithms (EAs) are a class of stochastic
search algorithms grounded on the Darwinian principles
of evolution [14], [15]. In this optimization paradigm, the
candidate solutions are represented as individuals of a pop-
ulation based on GNG networks trained with a subset of
the ETH-80 image set. The fitness of these individuals for
enduring into future generations is measured using three
different approaches: Global Error, Sample Distance, and
Sample Distance with Growth Restriction. The population is
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evolved with mechanisms inspired by biological evolution
(i.e., reproduction, mutation, and recombination) and using
two different starting conditions: random and empirical. The
different sets of parameter values found with this selection
mechanism are cross-validated using the object categoriza-
tion and recognition experimental protocol introduced in [9].
The detailed description of the methods used for the
present work is organized as follows: Section II defines
how EAs are utilized for optimizing the parameter values
of the GNG algorithm; Section III details the mechanism
used to find the fittest individuals for the different ap-
proaches proposed in the evolutionary optimization scheme;
Section IV describes the experiments performed to cross-
validate the performance of the different sets of parameter
values obtained during optimization; and Section V discusses
the experimental results and outlines future research steps.

II. OPTIMIZING PARAMETER VALUES

Following the principles of natural selection, EAs find
local optima of a fitness function by evolving a set of
individuals over the course of many generations. For this
purpose, the concept of natural selection is formalized into
the evolutionary cycle. Before entering the cycle, the first
parent population is initialized and evaluated, assigning each
individual a fitness value based on its performance. At the
beginning of the cycle, the current parent population mates to
create the offspring population, which is then mutated and
evaluated. Afterwards, the fittest individuals in the current
parent and offspring populations are selected to form the
new parent population for the next generation. This process
repeats until a termination criterion is met (e.g., a preset
number of generations, or a given time constraint).

A. Individuals

In the present work, an individual is composed of a set of
candidate values for the parameters of the GNG algorithm,
which are detailed in Table I. During evolutionary optimiza-
tion over g generations with a population of p members,
a generic individual I; ; € R™ x Z" with 0 < j < p,
0 <t < g and n,,n, € N, is defined by

Ii,j = (ri,j7zi7j) ) (1)

where r; ; € R"" and z;; € Z"* are vectors of real and
integer values, respectively, which represent the parameters
of the GNG algorithm. These values, also referred to as
entries, delineate the genome of the individual I; ;. The
order of the parameter values in the individual’s genome is
arbitrary and follows the one in Table 1. In order to simplify
the notation, the indices ¢ and j are dropped and only I, r
and z are used to denote individuals and their entries.

B. Initialization

We use two methods for initializing the individuals in the
parent population. The first one assigns a random value,
drawn uniformly from the interval permitted for the re-
spective parameters, to each entry in the individuals. The
second method assigns a predetermined set of values to all

Parameter | Domain | Description
€1 R winner neuron learning rate
€n R neighbor of winner learning rate
Qg R error decay on growth
a4 R error decay rate
K R threshold for neuron deletion
Amax Z maximal age of synapse
Smax 7 maximal number of synapses
Nmax Z maximal number of neurons
Agrowth Z growth time interval
Adecay Z decay time interval

TABLE I
THE GNG ALGORITHM PARAMETERS COMPRISED BY THE INDIVIDUALS.
THE UPPER BOUNDS FOR NUMBER OF NEURONS 7iypax AND SYNAPSES
Smax ARE INTRODUCED TO AVOID INTRACTABLE NETWORKS.

individuals in the initial parent population. These values are
empirically determined starting with the ones used for a
completely different task in [13] and further modifications
motivated by preliminary experiments on a subset of the
ETH-80 image set.

Empirically determined parameter values may be used
during initialization to condition the search space and avoid
locally optimal parameter value sets, which result in GNG
networks without the capability of adapting to the topology
of the input distribution. The presence of many such param-
eter value sets as well as the resulting behavior is suggested
by preliminary experiments conducted in [16].

C. Mating procedure

The mating of two parent individuals, which gives rise to a
new individual, is accomplished through mating selection and
recombination. During the former, the parents are randomly
selected from the current parent population with a uniformly
distributed probability. The latter is achieved by applying the
one-point-crossover operator [14], [17] to the real and integer
values. This operator starts copying values from the first
parent individual and switches to copying from the second
one at a point randomly selected with a uniform distribution.
Consequently, the genome of the resulting offspring individ-
ual is composed of entries from the genomes of both parents.

D. Mutation scheme

While mating is used to combine parameter values from
the parents, mutation serves the purpose of exploring previ-
ously unused ones.

Integer values are mutated using the discrete mutation
function mp : Z"* — Z"> proposed in [14], wherein each
entry in the vector z has a preset probability of undergoing
mutation. If mutation occurs, a random value within the
parameter’s range is selected and set as its new value.

The mutation of real-valued parameters is based on the
scheme described in [14], which adds a random number
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drawn from a normal distribution with mean zero and vari-
ance o2 to each entry contained in the vector r. However,
instead of using a single variance, individual variances are
associated with each entry in the genomes to reflect the
different sizes of the permitted ranges for the parameter
values. This method allows for a finer exploration of smaller
parameter spaces (e.g., parameters that have values in the
range [0,1]) and a broader mutation for parameters with
larger spaces. The values for the individual variances are
based on empirical observations made in [16].

Having an individual I, let the vector of associated vari-
ances for the mutation of real-valued parameters be s =
(0f,...,02 ) and x = (z1,...,2y,) be a vector where each
element xy, with 0 < k£ < n,., is a normally distributed zero-
mean random variable z; ~ N (O7 O']%). Then, the mutation
function m : R* x Z"* +— R™ x Z™* of an individual [ is
given by

m(Il)=(r+x,mp(z)) . (2)

E. Evaluating and selecting individuals

Ruled by the principles of natural selection, the evo-
lutionary optimization process considers only the g fittest
individuals to populate a new generation. The elitist selec-
tion scheme [17], a combination of the (u, \) and (p + \)
selection schemes described in [18], is used to select these
individuals from the parent and the offspring population,
based on a fitness value assigned to each of them during
a fitness assessment.

In order to evaluate the fitness of an individual I, the GNG
algorithm is applied to a training subset of the ETH-80 image
set using the individual’s genome to configure the parameters
of its learning process. Let U; = {n, s} be the undirected
graph of the resulting GNG network, where the neurons are
represented as the node vector n = (ng,...,ny) and the
synapses as the edge vector s, as well as the neuron centers
c; in the input space with 1 < [ < N. Upon completion
of the training, the resulting GNG network is used by a
fitness function f : R™" x Z™ — R to assign a fitness value
to the individual. This fitness value indicates how well the
resulting GNG network topology approximates the topology
of a subset of the ETH-80 image set.

The present work uses three fitness functions, each of
which takes into consideration a different approach for
evaluating the performance of the GNG algorithm’s learning
process. The proposed fitness functions are calculated using
error measures. Therefore, the EA considers an individual
fitter than another if its assigned fitness value is lower.

1) The Global Error fitness function: This fitness func-
tion uses the accumulated error variable tracked for each
neuron by the GNG algorithm to calculate the fitness of an
individual. With the nodes n of the GNG network Uj, the
accumulated error e; (calculated according to [S]) of n;, the
Global Error fitness function is calculated as the sum of all
accumulated errors:

N
far(I) =) a. 3)
=1

The parameters of the GNG algorithm that directly in-
fluence the accumulation of the neurons’ error values (i.e.,
ag and og) are not optimized when using the Global Error
fitness function because preliminary experiments performed
in [16] suggest that they always evolve to a solution that
minimizes the network’s global error independent of how
well its topology approximates the one of the sample data
distribution.

2) The Sample Distance fitness function: The approach
proposed for the fitness function fsp is not directly influ-
enced by any parameters of the GNG algorithm. Instead,
a testing subset Sp of the ETH-80 image set is used to
evaluate the fitness of an individual I. This approach allows
the evolutionary optimization process to overcome the limi-
tations present when using the Global Error fitness function.
Consequently, all available parameters can be optimized
when using the Sample Distance fitness function.

Given the trained GNG network U; and the test set St
of cardinality 7', the fitness value assigned by the Sample
Distance fitness function is calculated by

fsp(I) = d(ca,t) )
teSr
where 7 is the closest neuron to t in Uy, according to the
distance measure d calculated using the normalized scalar
product as shown in Equation 5, with x and y being two
vectors of the same dimension.
xTy

dx,y) =1— ———.
[l llyll

3) The Growth Restriction for the Sample Distance fitness
function: The fitness of an individual measured with the
Sample Distance method described in Section II-E.2 favors
the selection of individuals with genomes that lead to GNG
networks with large amount of neurons, since having more
neurons reduces the size of the Voronoi regions of all
neurons and hence also the sum of their distances to the test
samples [5]. During the evolutionary optimization process,
using this fitness function eventually leads to individuals that
generate GNG networks with one or more neurons for each
available sample, thus having over-fitted the problem or being
intractable in terms of computational complexity.

Grounded in these observations, a growth restriction based
on the total number of neurons is imposed upon the Sample
Distance fitness function:

far(I) = fsp(I)+ N . (6)

III. SELECTING THE FITTEST INDIVIDUALS FOR
CROSS-VALIDATION

®)

The core of the evolutionary optimization scheme intro-
duced in Section II is the nature of the individuals’ search
space, together with the evaluation and selection of the best
parameter value set encoded by the individuals’ genomes. As
described in Section II-E, the prior can be either empirical
(Emp) or random (Rnd) while three fitness functions are used
for the latter: Global Error (GE), Sample Distance (SD), and
Sample Distance with Growth Restriction (GR).
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Fig. 1. The summary of the evolutionary optimization process using the

different combinations of starting conditions and fitness functions introduced
in Section II. (a) shows the progression of the fitness values of the fittest
individuals. The time axis is scaled as percent of the runtime. (b) shows the
total number of generations for each evolutionary process and the number of
the generation in which the last improvement occurred. The implementation
of these experiments is based on the SHARK library [17].

The fittest individual for each combination of these dif-
ferent approaches is selected through an evolutionary op-
timization process. During this process, the generations are
composed of four individuals, two from the parent population
and two from the offspring one. The purpose of finding
such representatives lies in the use of their genomes to
cross-validate the evolutionary optimization scheme (see
Section 1V).

As it would occur in nature for different animal species,
the amount of generations varies according to the time each
individual requires to be developed and evaluated under each
evolutionary approach. Consequently, the stopping condition
of the optimization process is only time based. The results
of these experiments are summarized in Figure 1, and each
of their main components is detailed further in the remainder
of this section.

A. The data sets

During the individuals’ evaluation process, the fitness
function assigns a value to an individual by assessing a GNG
network trained with its parameter values to represent the
visual object knowledge captured by a subset of object views
from the ETH-80 image set. This image set contains views
and segmentation masks of 80 objects within a taxonomy
composed of 8 basic level categories (i.e., cows, dogs,
horses (Hor.), apples, pears, tomatoes (Tom.), cars, and cups)
from 4 superordinate areas (i.e., animals (Anim.), fruits and

‘%.sk‘{(i
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Fig. 2. Samples of ETH-80 object views extracted at 90° vertically and
all the horizontal angles taken at intervals of 22.5°. They are segmented
gray value images of single objects scaled to 128 x 128 pixels. The first row
depicts samples from the eight view-points used for training; the second
row shows the corresponding ones used for testing.

(@ (b)

Fig. 3. Square image features: (a) depicts a scheme of the local feature
detector placed over an ETH-80 object view; (b) illustrates the reconstruc-
tion [20] of the derived Square image feature.

vegetables (F.&V.), human made big (H.m.b.), and human
made small (H.m.s.)). Each category contains 10 different
individuals that are represented by 41 images from view-
points spaced equally over the upper viewing hemisphere. In
the present work, these views and their respective segmenta-
tion masks are combined to generate segmented gray value
images.

The training and test data sets used during this process
are composed of Square image features [9] derived from a
subset of the ETH-80 image set. This subset contains the
object views extracted from the 16 view-points defined by
the vertical angle of 90° and all the horizontal angles taken
at intervals of 22.5°. The features obtained from half of the
view-points are used for training and the remaining ones
are used for testing. Figure 2 shows an example of this
partitioning.

The Square image features are obtained using a local
feature detector [9], which consists of the complex responses
from five Gabor jets [19] derived with a square-shaped
structure from ETH-80 images. It represents a medium-sized
patch of information extracted from object views. Figure 3
exemplifies this type of image feature.

B. Training and testing procedures

The evaluation process of the individuals comprises a
training and a test procedure (see Section II-E). In the
first one, the GNG algorithm uses the training data set to
incrementally develop a neural network. In the second one,
the test data set is used to measure the performance of the
trained GNG network.
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On the one hand, the evaluation process under all the
evolutionary optimization approaches uses the same training
procedure. During training, the algorithm’s learning process
is tailored to the parameter values encoded by the individual’s
genome. This procedure is considered complete after 110
epochs, where each sample from the training data set is
used once per epoch by the algorithm’s learning process.
The topology of the resulting GNG network approximates
the one of the training Square image features.

On the other hand, the test procedure is tied to the nature
of the fitness function used by each of the evolutionary opti-
mization approaches. In the case of the GE fitness function,
the GNG network’s performance is measured with the sum
of the accumulated errors registered by its neurons during
training. The test set is neglected in this case. Alternatively,
the SD fitness function employs the trained GNG network
for identifying the neuron, which is closest to each of the
test Square image features according to the normalized scalar
product of their values. In this alternative case, the sum of the
smallest distance measure values is used to test the efficacy
of the trained GNG network. As stated in Section II-E, the
test procedure when using the Growth Restriction is achieved
similarly to the one of the SD fitness function by adding to
the resulting error measure the total neuron number of the
trained GNG network.

Figure 4 depicts the components of the GNG network’s
mean error (i.e., the global error and the total number of
neurons) observed during the training procedure of the fittest
individuals from the evolutionary optimization approaches.

IV. CROSS-VALIDATING THE EVOLUTIONARY
OPTIMIZATION SCHEME

The feasibility of using the scheme proposed in Section II
to improve the parameter values for the GNG algorithm
(comprised in the Neural Map’s learning procedure) is eval-
uvated with the experiments introduced in [9]: view-point
invariance test and leave-one-out cross-validation. This anal-
ysis encompasses the cross-comparison and cross-validation
of this scheme’s fitness functions.

A. Invariant object recognition and categorization tests

The experiments propounded in [9] test the performance of
a feature-based object recognition and categorization system
with object views of the ETH-80 image set. This system
is composed of a Neural Map and a winner-take-all voting
scheme. During a learning procedure, image features from
training object views are used to shape a self-organized
structure of model features [9]. After this training stage com-
pletes, image features extracted from a test object view are
matched against the Neural Map’s model features. Finally,
the registered responses are subjected to a voting scheme that
consolidates the recognized object superordinate and basic-
level categories. The object identity is also recognized during
this recall procedure, but only in the view-point invariance
test.

10
s g Control
5 10° GE/Emp
= ) SD/Emp
I it ki i
= GR/Emp
s GE/Rnd
© 10 SD/Rnd
—— GR/Rnd
10—10
0 10 20 30 40
epoch

(a)

Control
GE/Emp
—o— SD/Emp
GR/Emp
— GE/Rnd
SD/Rnd
—— GR/Rnd

neurons

epoch

()

Fig. 4. The mean errors’ components of the GNG networks observed
during the epochs of the training procedure: (a) depicts the sum of the
neurons accumulated errors and (b) illustrates the total number of neurons.
These neural networks are obtained with the parameter values encoded by
genomes of the fittest individuals.

B. Novel feature retrieval tests

The experimental protocol detailed in [9] is also replicated
without the voting scheme. The purpose of these additional
experiments is to measure the Neural Map’s ability to use the
information acquired throughout training for novel feature
retrieval. In these experiments, the Neural Map’s learning
procedure is achieved similarly to the ones described in
Section IV-A. However, during the recall procedure, the
matching responses are considered successful when the novel
and the model feature labels are equal, without subjecting
these responses to a winner-take-all voting scheme.

C. Experimental results

The experiments outlined in Section IV-A and Section IV-
B employ the parameter values encoded by the genomes of
the fittest individuals (see Section III) and control ones given
by [9] to train and test seven Neural Maps.

As stated in Section II-E.3, the parameter values found
with the Sample Distance fitness functions and empirical
starting conditions lead to GNG networks that are intractable
in terms of computational complexity. This is also observed
experimentally when using the Global Error fitness functions
with the same starting condition. Therefore, in these cases the
neural growth is limited to the maximal amount of neurons

1866



Approach Superordinate Level | Basic Level | Object Identity || Neurons Synapses Error

Voting Yes No Yes No Yes No Total | Max. Min. | Global Mean
Control 89.88 70.77 | 77.38 5192 | 4881 1740 1506 40 2| 15569 0.10
GE/Emp (L1) | 88.86 70.43 | 76.11 51.40 | 48.02  17.09 792 | 37.20 2 | 208.88 0.26
GE/Emp (L2) | 89.69 70.83 | 76.65 52.02 | 49.71 17.52 1584 | 36.60 21 19221 0.12
GE/Rnd 84.39 67.65 | 71.54 48.41 | 41.29  14.87 177.60 | 16.80 1.80 | 191.09 1.08
GR/Emp 59.62 4437 | 3434 2229 | 748 3.13 3 2 1 0.02 0.01
GR/Rnd 71.28 58.22 | 58.88 36.74 | 29.23  10.13 11| 580 1.60 63.33  5.76
SD/Emp (L1) | 92.02 71.21 | 7743 52.09 | 48.50 17.54 792 | 25.60 1 0.04 0
SD/Emp (L2) | 92.42 71.68 | 77.60 5271 | 50.25  18.03 1584 30 1 0.03 0
SD/Rnd 88.40 69.73 | 74.38 50.58 | 47.85 17.16 261.20 15 2 | 2347.81 8.99

TABLE I

AVERAGED RESULTS OF EXPERIMENTS BASED ON THE VIEW-POINT INVARIANCE TEST WITH (SECTION IV-A) AND WITHOUT (SECTION IV-B)

VOTING. THE FIRST SIX COLUMNS SPECIFY THE PERCENTAGE OF CORRECT CATEGORIZATION/RECOGNITION. FURTHERMORE, THE NUMBER OF

NEURONS, THE MAXIMAL AND MINIMAL NUMBER OF SYNAPSES PER NEURON, AND THE GLOBAL AND MEAN ERRORS ARE SPECIFIED.

observed in the control case (L2), and to half of this size
(L1).

All results are obtained by averaging several trials with the
experimental set-up introduced in [9] under different starting
conditions. The robustness of the experiments starting con-
ditions is achieved by shuffling the training data sets during
the Neural Map’s learning procedure.

1) View-point invariance test: The training and test data
set partitioning for the experiments grounded on the view-
point invariance test is based on the object’s view-points.
In this case, the test object views are selected by rotating
horizontally training object views by 22.5°. Likewise to the
approach used in the evolutionary optimization process (see
Section III-A), 1680 object views from 21 view-points are
used during learning and 1600 from 20 view-points are used
during recall.

The learning procedure of the Neural Maps is considered
complete after 1000 epochs. In one epoch, the Neural Maps’
underlying GNG neural network is adapted using 79236
Square image features derived from the training object views.
During recall, each test object view is used once, and a
total of 74930 Square image features are matched during
this procedure.

The properties of the trained the Neural Maps are averaged
and rounded for each of the seven evaluated approaches. The
structural and performance information derived from their
underlying GNG networks together with their categorization
and recognition rates are summarized in Table II.

2) Leave-one-out cross-validation: The experiments
based on the leave-one-out cross-validation use a data
set partitioning based on the object’s identity. In these
experiments, the Neural Maps are trained using the image
features extracted from all 41 object views of 79 objects,
and the ones derived from the 41 object views of the
remaining object are used for testing.

The learning procedure of the Neural Maps in these ex-

periments finishes after 125 epochs. The amount of training
and test Square image features used throughout the learning
and recall procedures depend on the data set partitioning.
Overall, the Neural Maps’ underlying GNG neural network is
adapted during one epoch using between 150919 and 153184
image features. The test object views are employed once
during recall, matching amid 982 and 3247 image features
during this procedure. These procedures are repeated for all
80 partitions of the ETH-80 image set, and the rates are
averaged over all tests.

The resulting categorization rates registered by these ex-
periments are shown in Table III. These results are cross-
validated with previous results on the same image set using
alternative methods. These methods use texture information
extracted from the object views to categorize a novel object.
On the one hand, the D, D, and the Mag-Lap are variations
of histograms of local gray value derivatives at multiple
scales [12]; the prior is a rotation-invariant descriptor and
uses first derivatives in a two dimensional coordinate system;
the latter uses the gradient magnitude and the Laplacian. On
the other hand, the combination of a feature-based and a
correspondence-based approaches (FB-MBC) in a form of
graph dynamics based on the hypothesis that the brain’s data
structure has the form of dynamic graphs whose nodes are
labeled with elementary features [21]; in this case the method
is evaluated using hierarchically organized (H) and single
element (S) categories.

V. CONCLUSIONS AND FUTURE RESEARCH

The present work employs the optimization paradigm
detailed in Section II to identify the parameter values of the
GNG algorithm comprised in the Neural Map’s learning pro-
cedure [9]. This paradigm is based on EAs and explores six
different optimization approaches given by the combination
of three fitness functions and two starting conditions (see
Section III). The parameter values obtained from the fittest
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Approach Superordinate Level | Basic Level

Voting Yes No Yes No

Control 97.50 64.73 | 88.75 41.24

GE/Emp (L1) | 96.25 63.09 | 78.75 39.50

GE/Emp (L2) | 97.50 64.69 | 83.75 41.08

GE/Rnd 85 58.82 | 72.50 35.67

GR/Emp 56.25 43.10 | 26.25 19.87

GR/Rnd 83.25 54.59 67 31.05

SD/Emp (L1) | 96.25 64.46 | 83.75 40.95

SD/Emp (L2) | 97.50 65.47 | 86.25 41.86

SD/Rnd 97.50 64.95 | 87.50 41.37

D,D, N/A 79.79

Mag-Lap N/A 82.23

FB-MBC (H) 49.18 64.07

FB-MBC (S) N/A 74.57
Approach Anim. | Hm.b. | Hm.s. | E&V. || Cows Dogs Hor. | Cars | Cups | Apples Pears Tom.
Control 96.67 100 90 100 80 60 70 100 100 100 100 100
GE/Emp (L1) | 96.67 100 80 100 60 30 40 100 100 100 100 100
GE/Emp (L2) | 96.67 100 90 100 90 40 40 100 100 100 100 100
GE/Rnd 83.33 70 60 100 50 30 40 80 100 100 90 90
GR/Emp 33.33 0 50 100 0 0 0 10 70 80 0 50
GR/Rnd 73.33 100 70 100 30 20 10 100 90 100 80 100
SD/Emp (L1) | 96.67 100 80 100 80 40 60 100 100 100 90 100
SD/Emp (L2) | 96.67 100 90 100 80 50 60 100 100 100 100 100
SD/Rnd 96.67 100 90 100 90 60 50 100 100 100 100 100
D,D, N/A N/A N/A N/A || 82.68 62.44 58.78 | 98.29 | 66.10 85.37 90 94.63
Mag-Lap N/A N/A N/A N/A || 9439 7439 7098 | 77.56 | 77.80 80.24 8537 97.07
FB-MBC (H) 80 6.10 4.88 | 47.48 || 48.10 37.64 56.71 | 47.46 | 54.83 90.25 89.95 87.64
FB-MBC (S) N/A N/A N/A N/A || 49.76 35.85 57.80 | 80.98 | 98.05 91.22 87.80 95.12

TABLE III

OBJECT CATEGORIZATION PERCENTAGES FOR LEAVE-ONE-OUT CROSS-VALIDATION WITH (SECTION IV-A) AND WITHOUT (SECTION IV-B) VOTING.

THE RESULTS OF THE DIDy AND THE MAG-LAP RECOGNITION METHODS DESCRIBED IN [12], AND THE ONES OF THE FB-MBC APPROACH

INTRODUCED IN [21], ARE INCLUDED FOR COMPARISON.

individuals of these approaches are cross-compared and
cross-validated with empirical ones using the experimental
protocol introduced in [9].

The results detailed in Section IV indicate that the SD/Emp
approach maximizes the Neural Map’s performance in the
experiments based on the view-point invariance test. This
approach outperforms all the other ones, even when having
a neuronal growth limit set to approximately half the size
observed for a control GNG network (see Section IV-C.1).
Nevertheless, this result is not replicated in the experiments
grounded in the leave-one-out cross-validation. Despite the
facts that in these experiments both SD/Emp and SD/Rnd
achieve the highest novel feature retrieval rates, even when

the parameter values are not optimized for this task, this
improvement is not sufficient to change the voting scheme
verdicts. Therefore, their categorization rates are slightly
inferior only to the control ones. In general, the remaining
approaches performed below the control ones in all exper-
iments, with the exception of the Mag-Lap that performed
slightly better only in the animal basic-level categories. In
this particular case, the false positives are concentrated in the
same superordinate area for the control, SD, GE, and GR/Rnd
approaches. These results suggest that the empirically set
parameter values can be further optimized using the given
optimization paradigm with the SD/Emp approach. However,
the improvement of the Neural Map’s performance using the
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optimized parameter values may depend on the difference
between the conditions used for the data set partitioning in
the optimization paradigm’s evaluation process, and the ones
from the Neural Map’s experiments.

It is worth noting that the evolutionary optimization pro-
cess with random starting conditions favors individuals with
small values for n,,x and Spax. Furthermore, it favors indi-
viduals with zero valued €;, when using fgp; and likewise
for the ¢, parameter, when utilizing fsp and fgg. The
approaches that use the fgp select individuals with very
small Agrowtnh values, which lead to rapidly growing GNG
networks.

The search for the fittest individuals (see Section III)
encounters two limitations that should be resolved in future
research. The first one relates to the computational complex-
ity of training and evaluating large GNG networks using high
dimensional image features. This is observed particularly
when employing a combination of fitness functions and start-
ing conditions like the GE/Emp or the SD/Emp, which favor
individuals that lead to large GNG networks. The evolution of
a generation using these processing-intensive approaches can
become computationally intractable. The second limitation is
the poor ability of the fitness functions to favor the saliency
of individuals that may generate better approximations of the
feature distribution topology. The present work introduces
the Growth Restriction (see Section II) to overcome the
first limitation, but empirically it is too restrictive, and
Neural Maps using this approach are experimentally the least
performing ones. As an alternative, the number of genera-
tions needed to find an optimal individual can be reduced
with a method based on the Covariance Matrix Adaptation
(CMA) [22], [23]. However, CMA only optimizes continuous
values and, therefore, has to be adapted for discontinuous
ones in order to be used with the approach presented in this
paper. Employing CMA might also allow for the use of the
CMA for Multi-objective Optimization [24] to restrict the
growth rates of the GNG networks. Concerning the second
limitation, the optimization process may be improved using
additional fitness functions to assess the learning capabilities
of a GNG network (e.g., assigning lower fitness values for
errors generated in later generations and disregarding errors
in earlier ones, or incorporating a rate of change observed in
the global error curve of the GNG algorithm).
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