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Background: Phosphene thresholds (PT) induced by transcranial magnetic stimulation (TMS) as well as
paired-pulse suppression (PPS) of visually evoked potentials (VEP) are used to characterize visual cortex
excitability, however, their relation remains unknown.
Methods: We measured PT after single TMS over the occipital lobe, and recorded VEPs after paired-pulse
stimulation at short stimulus-onset-asynchronies in the same subject. PPS was expressed by the ratio
second to first response.
Results:We found a negative correlation between PT and PPS (r ¼ �0.36, P ¼ 0.039) indicating that higher
PT were associated with smaller ratios indicative of low excitability, and vice versa. There was no
difference in PPS between subjects who perceived phosphenes and those who did not.
Conclusions: Although both approaches target different mechanisms, PT and PPS seem to reflect common
characteristics of visual cortex excitability. The lack of differences in PPS in subjects not perceiving
phosphenes suggests that they might not have higher excitability levels.

� 2013 Elsevier Inc. All rights reserved.
Introduction

Transcranial magnetic stimulation over the occipital lobe can
induce a brief perception of light sensations in the visual field, so-
called phosphenes. Thresholds to induce phosphene perception
expressed as relative intensities of maximal stimulator outputs are
a common tool to measure excitability in human visual cortex. By
using phosphene thresholds, altered excitability in visual cortexwas
found in patients suffering from migraine [1,2], ecstasy users [3],
healthy subjects with photosensitivity or photoparoxysmal
response [4], after appliance of transcranial direct current stimula-
tion [5], aftermedical treatmentwith anticonvulsants [6,7] and light
deprivation [8,9]. The examination of TMS-induced phosphenes is
the most common used instrument to explore excitability in visual
cortex. However, the detection and evaluation includes subjective
factors and depends on the compliance of the respective subject.
Furthermore, some subjects fail to perceive phosphenes [10,11]. In
recent studies, we investigated paired-pulse VEP behaviour in order
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to obtain an alternative approach to explore excitability of visual
cortex [12,13]. In analogy to paired-pulse paradigms in motor and
somatosensory system [14e17], paired-pulse visually evoked
potentials (VEP) provide information about paired-pulse suppres-
sion (PPS), an indirectmarker of cortical excitability,which is used to
characterize plastic changes in visual cortex [12,18e21].We recently
reported an enhanced excitability of visual cortex in patients
suffering from migraine [13], which is in line with observations
about reduced phosphene thresholds in these patients.

The aim of the present study was to investigate a possible
relation between TMS-induced phosphene thresholds and VEP
amplitude-ratios after paired-pulse stimulation assessed in the
same individual.
Methods

Subjects

50 healthy subjects (25.0 � 4.0 years [mean � SD]; 25 females
and 25 males) participated in this study. All subjects were free from
any regular medication and from neurological diseases. All subjects
gave their informed consent. The study was approved by the Ethics
Committee of the Ruhr-University Bochum and was performed in
accordance with the Declaration of Helsinki.
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Figure 1. Visually evoked potentials over cortical Oz of one subject after single (dark
grey trace) and paired-pulse stimulation with SOA of 107 ms (black trace). The deno-
tation C was used to characterize the positive and negative components of the first and
second response. The light grey trace results by subtracting the single-pulse trace from
the paired-pulse trace. The analyzed amplitudes of the first response (A1 ¼ C21 � C11)
and second response (A2 ¼ C22 � C12) after paired-pulse stimulation are marked by
vertical bars; amplitudes of the second response after subtracting the response to
a single pulse are denoted as A2s.
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Phosphene thresholds

Subjects were seated in a semi-darkened room with their head
fixed on a chin rest. We administered single-pulse TMS, using the
Magstim stimulator (Magstim, Whitland, Dyfed, U.K.) with a figure-
of-eight shaped coil (outside diameter 8.7 cm, peak magnetic field
strength 2.2 T, peak electric field strength 660 V/m). The coil was
fixed on a tripod and the handle was orientated upwards. The coil
was placed in the midline 1e5 cm above inion. The subjects were
stimulated with supposed suprathreshold intensity up to 100% of
maximal stimulator output until a phosphene was perceived. To
determine an optimal position to induce phosphenes the coil was
shifted in a horizontal line in 1 cm steps to both sides, and if
necessary in parallel lines 1 cm above or below. To determine
phosphene thresholds at this position, we applied single-pulse TMS
in an interval of about 10 s with increasing stimulator outputs
starting with 30% in 5% steps until phosphenes were reported. Then
we proceeded in 1% steps in a randomized order above or below the
supposed threshold. In analogy to previous studies, phosphene
threshold was defined as the minimum stimulus intensity of stim-
ulator output to induce phosphenes in three out offive trials [3,7,11].

Paired-pulse stimulation

During the VEP recording in a semi-darkened room, the subjects
sat in a comfortable chair in front of a stimulation screen (cathode
ray tube, frame rate 75 Hz, pixel resolution 800 � 600, spanning
23� � 17�of visual angle at the observation distance of 60 cm). Two
electrodes (Oz and Cz) were positioned according to the Interna-
tional 10e20-system. A reference electrode was placed over the
Fpz-position. Subjects were instructed to relax and to keep their
eyes focused on the centre of the display marked by a small dim
cross, which was displayed during the entire course of the
measurements.

The experimental paired-pulse paradigm consisted of checker-
board patterns with 36% contrast and a check size of 0.5� with
a mean luminance of 16 cd/m2, which were presented at two
different stimulus-onset-asynchronies (SOA). The first stimulus
appeared for one frame (13.33 ms), followed by presentations of
frames containing a homogenous grey background without
a change in the mean luminance. To avoid temporal aliasing, the
second stimulus appeared after variable SOAs in multiples of the
frame interval of 13.33 ms [22]. We used two different SOAs of
107ms (7 frames) and of 133ms (9 frames), which in recent studies
had revealed paired-pulse inhibition [12,13]. The SOAs were pre-
sented interleaved in 4 cycles of 10 paired stimuli each (each SOA
was presented 40 times overall; stimulation frequency was 1 Hz).
The interstimulus periods consists of a homogenous grey back-
ground while the mean luminance was kept constant. In another
session, single visual evoked potentials with a sequence of 100
checkerboard patterns, at the same contrast and luminance used in
the paired-pulse paradigmwere presented for one frame (13.33ms)
followed by frames containing a homogenous grey background
(intertrial interval 1000 ms; resulting stimulation frequency about
1 Hz) without a change in the mean luminance. The stimuli were
produced by the EP2000 system [23]. VEPs were recorded and
stored for offline analysis with a 32-channel-amplifier (Brain Amp,
Brain Products, Germany, sampling rate 5 kHz, band-pass filtering
between 2 and 1000 Hz). Evoked potentials after single and paired-
pulse stimulation were recorded in epochs from 200 ms before and
400 ms after the stimulus, baseline corrected to the pre-stimulus
interval and averaged. Signals exceeding 140 mV were rejected as
artifacts and not counted in the stimulation sequence. We use the
terms A1 and A2 to denote the amplitude of the response to the first
and second stimulus. We use the term C to denote the positive and
negative components of the responses (Fig. 1). To characterize the
paired-pulse response, the amplitude difference of the C1 (a posi-
tivity before 100 ms after stimulus onset [24]) and the C2
(a negativity later than 100 ms after stimulus onset) was measured.
To assess the paired-pulse interaction, confounds from superposi-
tion were removed by subtracting the response to a single pulse
stimulation from the paired-pulse stimulation trace. We analyzed
the amplitude of the response to the second stimulus of the paired-
pulse stimulation after subtraction of the response to single pulse
stimulation (second amplitude after subtraction ¼ A2s) and
referred it to the response to the first stimulus of the paired-pulse
stimulation before subtraction (A1). Paired-pulse suppression was
expressed as a ratio (A2s/A1) of the amplitudes of the second (A2s)
and the first (A1) peaks (see Fig. 1). The stimulation setup and
recording procedure was in analogy to the described procedure in
our previous studies [12,13]. Assuming a common basic mechanism
of paired-pulse inhibition at the SOAs used, we averaged the
analyzed amplitude-ratios of both SOAs for each subject.

Experiment schedule

The participating subjects were randomly assigned to two
groups. In one group TMS-induced phosphene thresholds was
tested first and then (in a second session) paired-pulse stimulation
was performed. In the other group the order of the sessions was
inverted.

Statistical analysis

We used unpaired, two-tailed t-tests to analyse differences of
averaged SOAs and single VEP amplitudes between subjects with
and without phosphene perception. Paired, two-tailed t-test was
used to test for differences between amplitude-ratios of both SOAs
and amplitudes of first and second response of VEP. Significance
was assumed at the P ¼ 0.05 level. Before using parametric tests,
normal distributionwas confirmed using the KolmogoroveSmirnov
test, and homogeneity of variances was confirmed by F-test. In
order to show correlation between phosphene thresholds and
averaged amplitude-ratios, as well as between both amplitude-
ratios we performed a linear bivariate correlation analysis (two-
tailed Pearson’s correlation). All calculations were performed using
SPSS 17.0 software package (SPSS software, Munich, Germany).



Figure 2. Linear bivariate correlation analysis of phosphene thresholds in % of
maximal stimulator output (x-axis) and amplitude-ratios after paired-pulse VEP
stimulation (y-axis) with linear regression.
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Results

Overall, 17 out of 50 participating subjects (34%) were unable to
perceive phosphenes even at maximum stimulator output and
hence no phosphene thresholds could be determined. The remain-
ing 33 subjects reported accurate and consistent phosphenes.

In this remaining group, the mean tested phosphene threshold
was 72.3 � 9.2% of the maximal stimulator output with a range
from 54 to 90%.

Paired-pulse ratios at SOAs of 107 ms and of 133 ms were
statistically not different with P ¼ 0.342, but were significantly
correlated (r ¼ 0.5, P < 0.005). The pooled ratios (averaged from
SOAs 107 ms and 133 ms) ranged from 0.44 to 1.49 (mean
0.94 � 0.28). We found a statistically suppressive effect with
a reduced second mean response in VEP compared to the first one
after applying paired stimuli (P < 0.001).

Correlation analysis revealed a significant negative correlation
between phosphene thresholds and averaged amplitude-ratios
(r ¼ �0.36, P ¼ 0.039) (see Fig. 2).

The averaged SOAs in subjects without phosphene perception
were 0.94 � 0.29 (range 0.45e1.61). The averaged SOAs statistically
did not differ between subjects with and without phosphene
perception with P ¼ 0.95.

Using t-test we found no statistical difference of single VEP
amplitude (C1/C2-response) between subjects with (31.3�13.8 mV)
and without phosphene perception (35.5�18.0 mV) with P¼ 0.364.

Discussion

This is the first study to investigate the relation between
frequently used excitability markers of human visual cortex: TMS-
induced phosphene thresholds and amplitude-ratios after VEP
paired-pulse stimulation. We found a slightly, but significant
negative correlation between both excitability markers. The higher
the phosphene thresholds, the smaller were paired pulse ratios of
paired-pulse VEPs, which signal low levels of cortical excitability,
and vice versa. Our results are in accordance with findings in
patients suffering from migraine [13,25], where reduced phos-
phene thresholds have been reported [2,26,27] as well as reduced
paired-pulse suppression indicative of enhanced excitability [13].
Although it is conceivable that both approaches target aspects of
visual cortex excitability, and hence reflect a common characteristic
of visual cortex, both techniques may be mediated through
different underlying mechanisms.

TMS-induced phosphenes evoke varying interindividual sensa-
tions of visual field disturbance ranging from brief and definable
light sensations to moving or colour changing clouds in the visual
field, the origin and underlying mechanisms, however, are still not
clarified. There is evidence that phosphenes are generated in the
primary visual cortex V1 cortex [10,11,28,29] and in extrastriate
visual-cortical areas V2/3 [10,29,30]. Furthermore, an involvement
of subcortical areas is described as a possible target of single TMS
pulses to induce phosphenes perception [31,32]. In addition, other
factors influence phosphenes perception like coil orientation, pulse
configuration (mono- or biphasic) and pulse duration [10].

In our study presented here 34% of all subjects were not able to
perceive phosphenes, even at maximum stimulator output. While
this percentage is in accordance with other studies, there is still no
conclusive explanation why some subjects fail to perceive phos-
phenes [10,11]. A possible limitation of phosphene perception has
been attributed to interindividual variations in the morphology and
topography of the stimulated areas caused by the depth of the
induced electric field, or individual variability in the folding of the
occipital gyri [33]. Sparing et al. suggested that interindividual
functional differences of visual neuronal networks might also play
a role for the induction of phosphenes [11].

Meister et al. found differences in fMRI activations of early visual
cortex and VEP amplitudes in response to a standard checkerboard
pattern between subjects who perceived phosphenes compared to
those who did not [34]. In studies using TMS-induced phosphenes
a higher prevalence of phosphene perception and reduced phos-
phene threshold in patients suffering from migraine compared to
a healthy control group were reported (overview see [25]). There-
fore, the lack of phosphene perception has been interpreted as an
indication of low excitability level in visual cortex. However, we did
not find a statistically difference of excitability assessed by paired-
pulse VEP stimulation depending on phosphene perception. Hence,
according to our findings, healthy subjects with and without
phosphene perception seem might not differ in the level of visual
cortex excitability.

In contrast to the detection and evaluation of TMS-induced
phosphenes, which depends to some extent on subjective factors
and the compliance of the subjects, amplitude-ratios of paired-pulse
VEPs can be measured in every healthy subject.

Based on studies in both animals andhumans, there is agreement
that VEPs reflect population synaptic currents, while topographic
studies using fMRI and electrical mapping in adult humans provide
strong support that the first major component of the VEP elicited by
a pattern onset stimulus (C1) arises primarily from parvocellular
regions of primary visual cortex (V1). The C2 and C3 component of
the VEP seem to have an extrastriate origin [35e37]. Despite
substantial experimental and theoretical work across all sensory
modalities, themechanismsmediating PPS are not fully understood.
There is agreement that presynaptic mechanisms play a crucial role
[38,39]. In rat auditory cortex, for SOAs longer 100 ms, synaptic
depression is assumed to play a crucial role [40]. In the visual cortex,
suppression is also more consistent with thalamocortical synaptic
depression than with inhibition [41,42]. In addition, there is
evidence for an involvement of GABAB receptors [43]. Besides the
contribution of GABAergic mechanisms, there is also evidence for
the involvement of glutamatergic transmission in PPS [44,45].
Because of differences in PPS between cortical and thalamic cells, it
has been argued that inheritance of thalamic response properties is
unlikely to account for long-lasting forward suppression [40].

The major difference of both methods is, that applying TMS to
induce phosphenes evokes a complex pattern of excitation and
inhibition through the artificial transsynaptic stimulation of striate
and extrastriate areas [46]. Contrary, paired pulse VEPs reflect the
activation of neurons in primary visual cortex following presenta-
tion of physiological stimuli that is transmitted via the afferent
sensory pathway. Taken together, both methods are useful to
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explore visual cortex excitability, and to characterize plastic
changes in visual cortex. Both approaches may therefore reflect
common characteristics of visual cortex excitability, but each
approach most likely targets different mechanism. A combination
of both approaches may provide a better understanding of excit-
ability changes in visual system.
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