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Learning constitutes a fundamental property of the human brain—yet an unresolved puzzle is the profound variability of the learning
success between individuals. Here we highlight the relevance of individual ongoing brain states as sources of the learning variability in
exposure-based somatosensory perceptual learning. Electroencephalogram recordings of ongoing rhythmic brain activity before and
during learning revealed that prelearning parietal alpha oscillations as well as during-learning stimulus-induced contralateral central
alpha changes are predictive for the learning outcome. These two distinct alpha rhythm sources predicted up to 64% of the observed
learning variability, one source representing an idling state with posteroparietal focus and a potential link to the default mode network,
the other representing the sensorimotor mu rhythm, whose desynchronization is indicative for the degree of engagement of sensorimotor
neuronal populations during application of the learning stimuli. Unspecific effects due to global shifts of attention or vigilance do not
explain our observations. Our study thus suggests a brain state-dependency of perceptual learning success in humans opening new
avenues for supportive learning tools in the clinical and educational realms.

Introduction
Perceptual learning describes the ability to improve perception as
a function of repeated sensory experience through training, prac-
ticing, or mere passive sensory stimulation (Fahle and Poggio,
2002; Seitz and Dinse, 2007; Sasaki et al., 2010). It is, however, a
common observation that despite intact sensory and cognitive
functions of the participants, the learning rate varies greatly
across subjects, and subpopulations of subjects often show little
or no learning (Fahle et al., 1995; Fahle and Henke-Fahle, 1996;
Hodzic et al., 2004). While there is agreement that attention is a
key factor that can determine the perceptual learning outcome
(Crist et al., 2001), examples exist where perceptual learning can
be induced without attention, e.g., by task-irrelevant (i.e., unat-
tended) or subthreshold stimuli (Watanabe et al., 2001). There-
fore other factors might impose additional constraints on the
learning process and might also determine the intersubject vari-
ability. Recently, evidence has been provided that the large-scale
resting-state network activity of the brain (Raichle, 2006) has a
considerable impact on perceptual performance (Sigman et al.,

2005; Lewis et al., 2009; Baldassarre et al., 2012). Closely related to
resting-state network activity are spontaneous ongoing neuronal
dynamics, which play a critical role in neural processing of sen-
sory information (Raichle, 2006; Deco et al., 2011), and serve as a
marker of an individual’s brain state. For example, oscillatory
ongoing activity has been shown to be closely related to percep-
tual performance (Linkenkaer-Hansen et al., 2004; Boly et al.,
2007; Hesselmann et al., 2008; Schubert et al., 2009), memory
processing (Sauseng et al., 2009), and motor behavior (Mazaheri
et al., 2009). Moreover, imaging studies in humans and animal
models have shown that trial-to-trial variability in evoked re-
sponses, a universal feature of stimulus processing, can largely be
explained by fluctuations of the underlying neuronal background
activity (Boly et al., 2007; Fox et al., 2007; Becker et al., 2008a,
2011; Mazaheri and Jensen, 2008). Because oscillatory brain
states exhibit unique patterns of permanent fluctuations that are
different across individuals, one might expect that learning vari-
ability could be, to some extent, also related to local ongoing
neuronal oscillatory activity, reflecting the individual’s brain
state that the learning stimulus is encountering. It is therefore
conceivable that oscillatory brain rhythms also influence percep-
tual learning. If this is true, different manifestations of ongoing
oscillations reflecting different brain states that either facilitate or
hinder perceptual learning, should have a major influence on
perceptual learning outcome. To test this hypothesis, we investi-
gated the relationship between perceptual learning and ongoing
neuronal oscillatory activity as recorded by electroencephalogra-
phy (EEG).

Materials and Methods
Subjects and experimental protocol
Twenty-six healthy, right-handed subjects (3 male, 26.1 � 4.0 years)
participated and gave written informed consent before the study, which
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was performed in compliance with the relevant laws and institutional
guidelines and approved by the ethics committee of the Charité Univer-
sity Berlin. Figure 1A shows the timeline of the experimental protocol. In
the pre-session, subjects conducted three two-point discrimination
(2PD) task runs with the right index finger (IF), to obtain a stable
discrimination-performance baseline. Only the third run was used as
2PD baseline for further analyses. A fourth 2PD task run was performed
with the left unstimulated IF, which we used as a control condition.
Subsequently, 15 min of resting state EEG was recorded. In the repetitive
sensory stimulation (RSS) session that followed, trains of somatosensory
stimuli were delivered for 30 min to the right IF. EEG was acquired
during the whole session. In the final post session, 15 min after termina-
tion of the RSS, subjects performed one 2PD task run for each IF.

High-frequency RSS
We used electrical and cutaneous stimuli for RSS. Both techniques had
been shown to induce equivalent improvement of tactile acuity implying
that the amount of stimulation-induced improvement of tactile discrim-
ination is not dependent on the type of either cutaneous or electrical
stimulation. In 20 subjects, electrical stimulation was applied using two
adhesive surface electrodes with an area of 15 � 20 mm. These were
attached to the palmar skin of the right IF, with the positive electrode
applied to the distal phalanxes and the negative electrode applied to the
proximal phalanxes. In 6 subjects, cutaneous stimulation was applied
using a small loudspeaker diaphragm with a diameter of �8 mm,
mounted to the tip of the right IF, and was used to transmit the tactile
stimuli of the RSS protocol to the skin (Godde et al., 2000; Pleger et al.,
2001; Dinse et al., 2003). Stimulation trains of 1 s in duration, consisted
of 20 single pulses applied at 20 Hz with an intertrain interval of 5 s. Total
duration of the RSS protocol was 30 min, resulting in a total number of
6000 pulses. Intensity of electrical stimulation was set to 50% above
sensory threshold, cutaneous stimulation was suprathreshold, and peak-
to-peak amplitude of the loudspeaker diaphragm was �100 �m accord-
ing to laser vibrometer measurements.

Psychophysical measurements
Tactile discrimination was assessed using the
method of constant stimuli by measuring si-
multaneous spatial 2PD thresholds (Godde et
al., 2000; Pleger et al., 2001; Dinse et al., 2003):
subjects were tested using 0.7, 1.0, 1.3, 1.6, 1.9,
2.2, and 2.5 mm separation distances. In addi-
tion, zero distance was tested with a single nee-
dle as a control for false alarms. The needles
were mounted on a rotatable disk that allowed
switching rapidly between distances. To ac-
complish a uniform and standardized type of
stimulation, the disk was installed in front of a
plate that was movable up and down. The arm
and fingers of the subjects were fixed to the
plate, which was moved up and down by the
experimenter. The down movement was halted
by a stopper at a fixed position above the nee-
dles. The test finger was held in a hollow con-
taining a small hole through which the finger
came to touch the needles, at approximately
the same indentations in each trial. Each dis-
tance, including zero distance, was tested 10
times in pseudo-randomized order, resulting
in 80 single trials per session (�10 min). The
subjects had to decide immediately if they had
the sensation of one or two tips by answering
“one” or “two.”

For each session, subjects’ responses to the 2PD
task were summed and plotted against the distance
as a psychometric function for absolute perceptual
threshold. Psychometric functions were fitted using
the psignifit toolbox, version 2.5.6 for Matlab (see
http://bootstrap-software.org/psignifit/), which
implements the maximum-likelihood method

described by Wichmann and Hill (2001). Based on the fitted curve, the
perceptual threshold was defined as the distance for which 50% correct
responses were obtained. The first two 2PD runs in the pre-session were
conducted to achieve a stable baseline before RSS. Only the third run was
used for further analysis.

The percentage threshold change of the 2PD task between pre- and
post-sessions served as an index of perceptual learning outcome. A de-
crease of the threshold was taken as an indication of an improvement in
tactile acuity. To be classified as a “learner,” the subject’s threshold
decrease of the right stimulated IF had to be greater than the 95%
confidence interval of the mean threshold change in the left (control)
IF. Using this criterion, each subject was classified as either “learner”
or “no-learner.”

For both hands, grand average threshold changes (pre- vs post-
session) were tested for significance using a paired Student’s t test (nor-
mality of the distribution was confirmed by an Anderson-Darling test).

EEG recording settings
Scalp EEG was recorded using a 64 channel-EEG system (BrainAmp,
Brain Products GmbH, 0.1–250 Hz hardware bandpass filter, 61 scalp
channels arranged according to the International 10 –20 System, two
electrocardiography channels, and one vertical EOG channel, all refer-
enced against CPz, impedances �5 k�). During all EEG recordings,
subjects sat in a quiet and dimly lit room and were instructed to stay
awake and watch a silent animal documentary on a computer screen (at
a distance of three meters distance). This allowed maintenance of a high
state of vigilance, while minimizing eye movements.

Data analysis
Psychophysical measurements. Subjects’ 2PD responses were summed and
plotted against the distance as a psychometric function. Threshold was
defined as the distance for which 50% correct responses were obtained.
Grand average threshold changes ( pre- vs post-session) were tested for
significance using a paired Student’s t test.

Figure 1. Experimental layout and behavioral results. A, Experimental protocol. B, Group (n � 26) mean 2PD detection
threshold (black bar), SEM (box), and SDs (whiskers) for pre (light gray) and post (dark gray) runs. RSS (black arrows) leads to a
significant decrease in discrimination thresholds ( p � 4.67 � 10 �6) for the stimulated right IF, but not for control left IF ( p �
0.906). For the right IF, pre-RSS results are shown for three consecutive runs, which were performed for baseline stabilization. C,
Detection rates for the eight different distances and the fits to the psychometric functions for runs pre 1 (light gray, triangles) and
post (dark gray, circles), for right stimulated and left control IF of a representative subject. The detection threshold was determined
as the distance for which a level of 50% correct responses was reached.
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EEG. EEG data analysis was performed using
MATLAB and the EEGLAB toolbox (Delorme
and Makeig, 2004). EEG was down-sampled to
100 Hz and filtered (1– 40 Hz) to remove slow
drifts and line-noise, and to improve the fre-
quency specificity of subsequent post-
processing techniques. EEG data were visually
inspected and segments of gross movement ar-
tifacts (due to movements or bad electrode im-
pedances) were excluded. In all datasets, such
segments constituted �2% of the data, indicat-
ing an overall sufficient data quality. For each
subject, EEG datasets of all three sessions (pre,
RSS, post) were merged and EEG scalp channel
data (61 channels) were submitted to an ex-
tended Infomax independent component
analysis (ICA). ICA linearly unmixes the orig-
inal EEG channel data into a sum of maximally
temporally independent and spatially fixed
components (Bell and Sejnowski, 1995). For
each of the resulting independent components
(ICs) we calculated power spectra using Fast
Fourier transforms (FFTs, resolution 0.5 Hz),
somatosensory evoked potentials (SEPs) time-
locked to the sensory stimulus, and event-
related spectral perturbation (ERSP) images
(see EEG— event-spectral perturbation).

Visual inspection of time courses, spectra, and topographic distribu-
tions was used to identify ICs that reflected eye movement, scalp muscle
artifacts and movement artifacts. These ICs were removed from the data.
To ensure that the RSS stimuli were correctly applied and adequately
processed cortically, we scanned all remaining ICs in each subject for
components representing activity related to the somatosensory process-
ing of the stimulus (henceforth referred to as �IC). To be identified as
�IC, four criteria had to be met: (1) a clear sensorimotor topography of
the component map, (2) a clear alpha (8 –12 Hz) frequency peak in the
component spectrum (a beta peak is usually expected, but is not obliga-
tory), (3) an SEP with a significant primary amplitude response (P50),
and (4) a significant event-related desynchronization (ERD) in the alpha
frequency band for the somatosensory stimuli (Cheyne et al., 2003; Gaetz
et al., 2006) applied during the RSS session (see EEG— event-spectral
perturbation). Figure 2 shows the properties of a �IC in a representative
subject. The component exhibits a clear sensorimotor topography, a
spectral peak in the alpha and beta band, and both an evoked and an
induced response to the stimulus.

Identifying components extracted by the ICA that were related to so-
matosensory processing, was primarily to ensure that the RSS was suc-
cessfully applied and to identify the peak frequency of the central alpha
rhythm. However, we performed all subsequent analyses in channel
space and not in component space because we did not want to bias our
analysis a priori to only ongoing activity related to the sensorimotor
system. A considerable fraction of rhythmic brain activity relevant to
perceptual learning might be hidden in other components that were not
categorized as �ICs.

For each subject, the individual peak frequency (I�f) of the central
alpha rhythm was determined as the frequency in the power spectrum of
the �IC showing the maximum value within the broad alpha (8 –12 Hz)
band. The following frequency bands were defined: delta (1–3 Hz), theta
(4 –7 Hz), alpha (I�f � 0.5 Hz to I�f � 0.5 Hz), beta (13–29 Hz), low
gamma (30 – 40 Hz). We calculated two EEG parameters separately for
each subject, channel, session and sub-band: (1) the average spectral
power during the resting state pre-session before RSS (Welch’s method,
Hamming-windowed segments, length 2 s, 50% overlap, resolution 0.5
Hz), and (2) the event-related induced change in spectral power due to
the somatosensory stimulus during RSS (see next paragraph).

EEG— event-related desynchronization. We calculated the event-
related induced change in spectral power due to the somatosensory stim-
ulation, separately for each frequency band. EEG time series data from
each channel were segmented into epochs starting 1 s before and ending

4 s after the first pulse of each 20-pulse train, resulting in 300 epochs of 5 s
duration. Each epoch was then transformed to a spectrographic image
using a moving-window average of FFT spectra with a resolution of 0.5
Hz. Each spectrographic image corresponds to a data matrix, with rows
representing frequencies and columns representing time points. Mean
ERSP images were obtained by subtracting the mean log baseline power
(�1 s to �0.5 s) from the log power at each frequency and latency in each
trial, and then averaging the resulting images over all trials (see (Delorme
and Makeig, 2004) for a detailed description of ERSP calculation). The
use of the log power spectrum reveals the relative event-related changes
in spectral power, expressed in decibels. Significant intrasubject mean
changes in power from baseline ( p � 0.01) were identified using permu-
tation statistics. Because the time and frequency extension of the ERD
can be highly variable across subjects, we did not use a fixed time-
frequency window to calculate ERSP. In each subject, we used the ERSP
of the �IC to identify the largest cluster of significant RSS-induced ER-
SPs, separately for each investigated frequency band. The time-frequency
extension of the respective ERSPs was used as a mask, and frequency-
specific ERSPs were calculated in each channel by taking the mean log
power value within this mask.

Correlation analyses
Pearson’s linear correlation coefficients were calculated for psychophys-
ical parameters (2PD changes for stimulated and control IF), and EEG
parameters (resting-state power, ERD), across subjects, but separately for
each channel. Normality of the data was ensured by the Anderson-
Darling test.

Correction for multiple comparisons
Correlation analyses were conducted separately for each channel to yield
information about a possible topography. This approach increases the
probability of type I errors (false alarms), and thus mandates a correction
for multiple statistical testing (or multiple comparison). To this end, we
used a cluster-based nonparametric statistical framework (Bullmore et
al., 1999; Maris and Oostenveld, 2007), which controls the false alarm
rate at a fixed alpha-level, regardless of the underlying statistic. Signifi-
cant channels ( p � 0.01) were clustered on the basis of temporal adja-
cency. The cluster-level statistic was defined as the sum of all t-values (or
F-values) within a cluster. The same procedure was applied to a large
number (N � 2000) of surrogate datasets, in which the two conditions
were randomly shuffled between subjects.

The cluster-level statistic of the largest cluster of each permutation pro-
vides a permutation distribution of maximum cluster statistics occurring by
chance. A cluster of the true dataset was considered significant if the observed

Figure 2. Properties of an independent component reflecting �-rhythm activity (�IC) in a representative subject. A, Topo-
graphic distribution �IC weights (white dots display channel locations, color-coding as in C, but without units). B, Mean log power
spectrum. C, Time-frequency image showing ERSP, which is the relative change in event-related power at different frequencies,
time-locked to the high-frequency (20 Hz) repetitive somatosensory coactivation stimulus which starts at time point zero and is
sustained for one second. Note the pronounced ERD in the alpha and beta frequency band during stimulation. D, Corresponding
averaged somatosensory evoked potential.
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cluster statistic exceeded the 97.5 percentile of the permutation distribution
(leading to a critical alpha-level of 0.05 of a two-sided test).

Results
To induce perceptual learning, we took advantage of a learning
approach, where perceptual improvement is induced not
through training and practicing, but through repeated expo-
sure to high-frequency RSS (Godde et al., 2000; Pleger et al.,
2001, 2003; Dinse et al., 2003, 2006; Ragert et al., 2008, Beste et al.,
2011). As a psychophysical measure of perceptual learning, we
assessed tactile acuity before and after RSS. As a measure of neu-
ronal activity we acquired EEG before and during the perceptual
learning process.

Perceptual learning—increased tactile acuity after RSS
After three runs of the 2PD task with the right IF, subjects
reached a stable discrimination-performance baseline
(ANOVA of the three runs: F: 0.55, p � 0.578, Fig. 1B). The third run
was used as prestimulation baseline and compared with the post-
stimulation 2PD run. Thirty minutes of RSS led to an enhancement
of tactile acuity, as expressed by a significant reduction of the 2PD
threshold (post hoc difference pre-post � 0.24 mm, p � 4.67 �
10�6, paired Student’s t test, Fig. 1B), which is in line with previous
studies using an identical protocol (Godde et al., 2000; Pleger et al.,
2001, 2003; Dinse et al., 2003). Similar to earlier studies, the effect
was specific for the stimulated right IF, while the discrimination
threshold of the left control IF remained unchanged (difference pre-
post � 0.0058 mm, p � 0.906). Although RSS led to a significant

improvement in discrimination abilities on
average, individual learning success varied
greatly, which corroborated previous find-
ings using this procedure (Godde et al.,
2000; Pleger et al., 2001; Hodzic et al., 2004).
Separate analyses for the two different stim-
ulation conditions yielded pre-post dis-
crimination differences of 0.25 mm, p �
2.48 � 10�5 and 0.20 mm, p � 0.16 for
electrical and cutaneous stimulation respec-
tively. Despite the fact that all subjects in-
cluded in the study exhibited a significant
EEG response to the RSS (see Materials and
Methods), six (two vs four undergoing cu-
taneous vs electrical stimulation) of the 26
subjects showed no improvement after RSS.
Notably the electrical stimulus intensity ad-
justed to 50% above the individual sen-
sory threshold did not correlate with the
degree of perceptual learning (r � 0.11,
p � 0.63).

Central alpha rhythm power during
resting-state before RSS predicts
perceptual learning
Next we analyzed how much the different
ongoing neuronal states of the individual
subjects, before and during RSS, might ex-
plain the observed differences in the
learning success. In our analyses, all EEG
channels and frequency bands ranging
from delta to low gamma (i.e., 1– 40 Hz)
were covered. Because we used tactile
stimulation for RSS, we expected to find
main effects for the oscillatory activity of

sensorimotor cortex peaking in the alpha (8 –12 Hz) and beta
(13–29 Hz) band and referred to as rolandic mu and beta
rhythms (Pfurtscheller and Lopes da Silva, 1999). We first corre-
lated individual changes in discrimination with the channelwise
spectral power of ongoing oscillatory EEG activity during the
resting-state period before learning (henceforth referred to as
resting-state power). Of all the analyzed frequency bands, we only
found significant correlations in the alpha frequency band, where
a single cluster of electrodes over the postcentral parietal cortex,
contralateral to the stimulation site, showed a highly significant
effect (cluster level p � 0.002, maximum correlation in channel
CP1: r � 0.60, p � 0.0013, Fig. 3, right column). Notably, this
relation was specific to perceptual improvement, since it was not
present for either the control left IF (corresponding channel CP2:
r � �0.06, p � 0.77, Fig. 3, left column), or for the perceptual
performance before RSS (channel CP1: r � 0.095, p � 0.64).
Thus, the individual ongoing resting-state central alpha
rhythm power in the prelearning phase predicts the individual
perceptual learning efficacy, and accounts for up to 36% of the
overall variance in the perceptual learning rate (with a peak
correlation coefficient of r � 0.6, the maximum coefficient of
determination R 2, or explained variance, is 0.36). Separate
analyses for the two different stimulation conditions yielded
for electrical stimulation a maximum correlation in channel
C1: r � 0.61, p � 0.0046 but no significant correlation for the
cutaneous group.

Figure 3. Correlation between 2PD change (left column: stimulated right IF; right column: control left IF), and alpha band
resting-state EEG power before perceptual learning. A, Top row, Scalp distribution of Pearson’s correlation coefficients R and
corresponding P-values. Black dots, channels within significant cluster ( pclust � 0.002). Gray diamond, Channel CP1 with maxi-
mum correlation to learning rate (for right IF)/corresponding contralateral channel CP2 (for left IF). B, Scatter plot of single subject
values at channels CP1/CP2. Successful learners in green (n � 20), other subjects in red for illustration purposes—no categoriza-
tion/collapsing was done for correlation analysis.
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Induced event-related central alpha
rhythm change during RSS predicts
perceptual learning
A well known feature of the central alpha
rhythm is a decrease of amplitude during
sensory or motor activity. This phenome-
non has been termed ERD (Pfurtscheller
and Lopes da Silva, 1999; Cheyne et al.,
2003; Gaetz and Cheyne, 2006). To fur-
ther analyze the impact of ongoing oscil-
lations during the perceptual learning
phase, we computed the induced change
of oscillatory power after each train of
stimulation, and correlated the individu-
al’s average power change with the per-
ceptual learning outcome. As expected,
the stimulation during RSS led to signifi-
cant ERD of the central alpha rhythm in a
large cluster of contralateral channels
(cluster level p � 0.0005). The strongest
ERD was found in channel C3, located
over the contralateral sensorimotor cor-
tex (�1.67 dB, p � 1.64 � 10�7). Fur-
thermore, in a single cluster of channels
over the sensorimotor cortex contralat-
eral to RSS the individual central alpha
rhythm ERD was significantly correlated
with the individual perceptual learning
outcome (Fig. 4 left column, cluster level
p � 0.0085, maximum correlation in
channel FC3: r � �0.59, p � 0.0015,
Pearson’s linear correlation). The nega-
tive correlation coefficient indicates that
higher learning success was associated
with stronger power decrease. Again, the
significant correlation was only present for the right IF exposed to
RSS, but not for the left control IF (Fig. 4 right column, corre-
sponding channel FC4: r � 0.046, p � 0.82). Thus, not only the
ongoing resting-state power of the central alpha rhythm before
learning, but also the central alpha rhythm response to the tactile
stimuli delivered during RSS, was highly predictive of the percep-
tual improvement. The ERD strength in response to the RSS
stimulation accounted for up to 34.8% of the overall variance in
the perceptual learning rate (R 2 � 0.348). We did not find a
significant correlation in any of the other frequency bands, sug-
gesting that the relationship is indeed specific to the central alpha
rhythm. There was also no significant correlation between the
electrical stimulus intensity set to 50% of the individual threshold
and the degree of ERD (channel with maximum ERD: C3, r � 0.3,
p � 0.2). Separate analyses for the two different stimulation con-
ditions yielded for electrical stimulation a maximum correlation
in channel FC3: r � �0.56, p � 0.01 and for cutaneous stimula-
tion a maximum correlation in channel CP3: r � �0.83, p �
0.058. A correlation analysis between ERD and the peak-to-peak
amplitude of the early component of the somatosensory evoked po-
tential revealed for none of the EEG channels a significant correla-
tion. Channel C3 that exhibited maximal ERD and ERP responses in
the grand average yielded a correlation of r � 0.14/p � 0.50.

EEG signatures of central alpha rhythm explain
interindividual differences in perceptual learning
We identified two EEG signatures of ongoing activity that
predicted the individual perceptual learning efficacy, each ac-

counting for �35% of the interindividual variance in perceptual
improvement. The two predictor variables—resting-state cen-
tral alpha rhythm power before stimulation (regressor I) and
central alpha rhythm ERD during stimulation (regressor II)
are known to exhibit a close relationship (Doppelmayr et al.,
1998), and might be partially dependent. Therefore, the ques-
tion arises as to how much of the behavioral variance is ex-
plained by both regressors together. In principle they could
explain the same or independent parts of the variance in be-
havioral data— or a combination of both. One way to solve
this problem is to create an orthogonal set of predictor vari-
ables (i.e., by orthogonalizing one regressor to the other). In
such an orthogonal set, it is ensured that each predictor vari-
able explains a unique part of the variance in the observed
variable (in our case the perceptual learning rate). Figure 5
shows a topographic distribution of the total explained vari-
ance that is explained by the sum of the orthogonal set of the
two predictor variables, obtained by a modified Gram-
Schmidt projection. A center of gravity is visible over the con-
tralateral sensorimotor cortex (maximum at channel FC3:
R 2 � 0.638). Interestingly, the orthogonalized predictor vari-
ables contributed almost equally to the total explained vari-
ance (regressor I/II: R 2 � 0.289/0.349). These results, together
with the different topographies seen in Figures 3 and 4, suggest
that the two EEG signatures do reflect two distinct sources of
the central alpha rhythm accounting for different aspects of
the interindividual variability in perceptual improvement. In
summary, our findings suggest that �64% of the interindi-

Figure 4. Correlation between 2PD change (left column, stimulated right IF; right column, control left IF) and alpha band ERD
during RSS. A, Top row, Scalp distribution of Pearson’s correlation coefficients R and corresponding p-values. Black dots, Channels
within significant cluster ( pclust � 0.0025). Gray diamond, Channel FC3 with maximum correlation to learning rate (for right
IF)/corresponding contralateral channel FC4 (for left IF). B, Scatter plot of single subject values at channels FC3/FC4. Successful
learners in green (n � 20), other subjects in red for illustration purposes—no categorization/collapsing was done for correlation
analysis.
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vidual differences of perceptual improvement, induced by
exposure-based perceptual learning, can be explained by on-
going oscillatory activity of the sensorimotor system before
and during the learning phase.

Discussion
We aimed to identify neuronal determinants that explain inter-
individual differences in exposure-based perceptual learning
through repetitive coactivation of the nerves of the fingers. This
type of stimulation improves tactile discrimination abilities and
enlarges cortical representation of the respective skin area
(Godde et al., 2000; Pleger et al., 2001, 2003; Dinse et al., 2003).
Due to the coactive nature of stimulation, the effect is suggested
to reflect Hebbian learning. In other words, repeated simultane-
ous activation of many neural receptive fields leads to increased
synaptic efficacies between neuronal representations. When us-
ing a modified version of the coactivation protocol consisting of a
single, small stimulation site instead of one large area, no changes
in perception or cortical maps occur (Pleger et al., 2003; Ragert et
al., 2008). This implies that spatial summation requirements, in-
dicative of cooperative processes, need to be fulfilled to drive
behavioral change.

We found that individual perceptual improvement is pre-
dicted by two specific features of ongoing neuronal oscillations.
The resting-state parietal alpha rhythm (8 –12 Hz) power before
perceptual learning and central alpha rhythm ERD during the
learning phase accounted for 64% of the interindividual variance
in perceptual learning.

Nonspecific factors, such as interindividual differences in at-
tention and vigilance, appear unlikely explanations for this phe-
nomenon for the following reasons: First, there was no relation
between ongoing activity and interindividual fluctuations of tac-
tile acuity for the unstimulated left IF, which was not treated with
RSS and therefore served as a behavioral control. Conceivably, a
global shift of attention or vigilance would affect the performance
of both the stimulated and the unstimulated finger. Second, the
behavioral baseline performance of the right stimulated IF before
learning did not correlate with parameters of ongoing activity,
either before or after learning— however, a vigilance/attention
effect would require such a correlation. Third, the central alpha
rhythm power that predicted the learning outcome showed a
lateralized topography with a peak over the sensorimotor cortex

contralateral to the RSS protocol. Typi-
cally, global vigilance and/or attention ef-
fects are related to more symmetrical
changes in the fronto-occipital distribu-
tion and amplitude of the alpha rhythm.
Finally, the direction of the observed rela-
tion between central alpha rhythm power
and performance argues against a global
vigilance/attention effect: In our data,
high values of resting-state central alpha
rhythm power were linked to higher per-
ceptual learning efficacy, whereas high at-
tention or vigilance would be indicated by
low alpha-rhythm power (Thut et al.,
2006; Mazaheri et al., 2009).

It is assumed that incoming stimuli
and internal ongoing neuronal dynamics
interact (Buonomano and Maass, 2009).
Supposedly not only the firing rates at the
time of stimulus arrival matter— but also
“hidden” neuronal states, such as altered
synaptic efficiencies (Buonomano et al.,

2009). Indeed, a close relationship between stimulus-evoked ac-
tivity and spontaneously ongoing oscillations have been reported
not only for EEG/MEG (Becker et al., 2008a, 2011; Mazaheri and
Jensen, 2008), but also in invasive animal recordings (Arieli et al.,
1996) and fMRI (Fox et al., 2007).

We provide further evidence for this close relationship by
showing a positive relation between resting-state alpha rhythm
power before perceptual learning, and the increase in behavioral
performance due to the learning process. These findings are in
contrast to other data indicating negative relations between on-
going (prestimulus) alpha power and evoked activity/perception
in somatosensory (Linkenkaer-Hansen et al., 2004) and visual
systems (Thut et al., 2006; Becker et al., 2011), and also contradict
results demonstrating decreased excitability of cortex regions ex-
pressing higher alpha power (Romei et al., 2008). Part of these
differences might be due to the fact that we examined interindi-
vidual variability of resting alpha-rhythm power before learning
and not intraindividual trial-by-trial fluctuations of prestimulus
central alpha-rhythm power. The prevailing theory postulates
that increased alpha activity reflects top-down inhibitory control
of task-irrelevant brain resources (Pfurtscheller and Lopes da
Silva, 1999; Klimesch et al., 2007) known as “gating by inhibi-
tion” (Jensen and Mazaheri, 2010). Indeed, top-down processes
modulate alpha activity (lateralization) in sensorimotor regions
presumably reflecting frontally controlled disengagement of
task-irrelevant regions (Haegens et al., 2011).

In our study though high alpha-rhythm power may indicate
that learning-relevant regions are not engaged in any process and
hence exhibits an idling state with high reactivity and prepared-
ness to process incoming learning stimuli. This interpretation is
in line with a theory about the possible functional meaning of the
brain’s intrinsic activity, proposing that intrinsic activity could
serve the purpose of facilitating responses to stimuli by increasing
the gain of neurons through a constant seesaw between excitation
and inhibition (Haider et al., 2006; Raichle, 2006). Positive rela-
tions between alpha power and fMRI signals have been reported
for the default mode network (DMN), a network of coherent
intrinsic activity during the resting state (Mantini et al., 2007).
That high alpha states in parietal cortex are relevant for learning,
suggests functional relevance of the DMN state before learning—

Figure 5. Topographic scalp map showing the total variance of individual gain in tactile acuity (i.e., 2PD threshold change) after
RSS explained by the (channelwise) orthogonalized set of EEG predictor variables, alpha band resting-state power and alpha band
ERD (left column, right stimulated IF; right column, left control IF). The explained variances (i.e., the respective R 2) of both predictor
variables were added to yield the total explained variance. The channel with the maximum explained variance is indicated as a gray
diamond (FC3, R 2 � 0.638).
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similar to its role for verbal working memory (Hampson et al.,
2006).

While the link between alpha rhythm activity and perceptual
learning—as revealed in the present study—is new, there exist
studies that report a relation between the alpha rhythm and visual
short-term memory performance. For such tasks a difference in
alpha frequency has been revealed for good and bad performers
(Klimesch et al., 1990, 1993) and visual memory capacity corre-
lated with alpha amplitude ipsilateral to relevant items suppos-
edly reflecting suppression of irrelevant information (Sauseng et
al., 2009).

It needs to be noted that the topographies of the variables
relevant for learning– i.e., baseline alpha and alpha ERD— do
differ (Figs. 3, 4)— despite the fact that they are both located over
central brain areas and hence are referred to here to as “central
alpha.” While for the baseline alpha rhythm we find a posteropa-
rietal distribution, the topography of alpha ERD is located over
sensorimotor cortex. For the posteroparietal alpha rhythm we
have shown previously a link to the DMN in fMRI as explicated
above (Becker et al., 2008b; Ritter et al., 2008). The sensorimotor
alpha rhythm is also known as rolandic alpha or mu-rhythm
(Pfurtscheller and Lopes da Silva, 1999).

As to the positive correlation between the central alpha (or
mu) rhythm ERD during perceptual learning, and behavioral
improvement, our data support the notion that learning-relevant
brain regions are more activated in “good learners.” The ERD of
the central alpha rhythm in response to incoming stimuli
(Cheyne et al., 2003; Gaetz et al., 2006) has been interpreted as a
marker for cortical activation (Pfurtscheller, 2006).

Other studies have shown that the amount of perceptual im-
provement after exposure-based perceptual learning is positively
correlated to the amount of local cortical reorganization as indi-
cated by mapping of somatosensory evoked potentials (Pleger et
al., 2001; Dinse et al., 2003), evoked fMRI responses (Hodzic et
al., 2004) or changes of cortical excitability (Höffken et al., 2007).
Our data extend these studies by demonstrating that also cortical
reorganization is related to the amount of central alpha rhythm
ERD. The fact that we see a desynchronization of the scalp alpha
rhythm during the perceptual learning phase does not necessarily
exclude an active mechanistic role of these oscillations at the
cellular level. Both cessation and amplitude decreases of oscilla-
tions on the one hand and desynchronized but persisting oscilla-
tory activity on the other hand can lead to the same attenuation of
large scale oscillations (Telenczuk et al., 2010).

Our study highlights the relevance of ongoing brain states by
demonstrating that the interindividual variability of the learning
success is explained to a large extent by resting parietal alpha
rhythm before, and central alpha—more specifically mu—
rhythm ERD during perceptual learning. This observation is in
line with earlier findings that point to a significant relationship
between resting-state network activity and perceptual learning. A
recent study showed that interindividual variability in perceptual
performance is predicted by functional connectivity patterns of
large-scale resting-state networks before learning (Baldassarre et
al., 2012). Another study revealed that individual performance
changes after perceptual learning are predicted by alterations of
resting-state functional connectivity (Lewis et al., 2009). Our
findings are also consistent with the work of Sigman et al.
(Sigman et al., 2005) who showed that DMN activity predicted
perceptual learning.

It remains to be clarified whether differences observed in al-
pha rhythm power before learning reflect a spontaneous expres-
sion of individual brain states or a fingerprint-like property. In

the latter case, differences in central alpha rhythm power might
be coupled to gross anatomical or genetic differences.

In conclusion, our results show that a person’s ability to learn
is dependent on the brain state before and during perceptual
learning. This provides a fundamental contribution to the puzzle
of the origins of intersubject variability in perceptual learning.
Conceivably, better understanding of the conditions that facili-
tate different types of learning is instrumental for further devel-
opment of strategies in the clinical and educational realms.
Concretely, one apparent consequence of our results is the pos-
sibility to manipulate individual alpha power through neurofeed-
back to enhance perceptual learning.
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