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Abstract

We present a theoretical analysis of Gaussian-binaryictsdrBoltzmann ma-
chines (GRBMs) from the perspective of density models. Téyedspect of this
analysis is to show that GRBMs can be formulated as a consttanixture of

Gaussians, which gives a much better insight into the medealpabilities and
limitations. We show that GRBMs are capable of learning nregfnl features

both in a two-dimensional blind source separation task antadeling natural
images. Further, we show that reported difficulties in irfjnGRBMs are due
to the failure of the training algorithm rather than the mdtkelf. Based on our
analysis we are able to propose several training recipeshvaliowed success-
ful and fast training in our experiments. Finally, we disstise relationship of
GRBMs to several modifications that have been proposed tooveghe model.

1 Introduction

Inspired by the hierarchical structure of the visual cortevecent studies on proba-
bilistic models used deep hierarchical architectures tarnlehigh order statistics of the
data [Karklin and Lewicki(2009]), Koster and Hyvarine{®)]. One widely used architecture is
a deep believe network (DBN), which is usually trained aslstd restricted Boltzmann ma-
chines (RBMs)|[Hinton and Salakhutdinov(2006), Bengiol¢P806),| Erhan et al.(201)0)]. Since
the original formulation of RBMs assumes binary input valuthe model needs to be modi-
fied in order to handle continuous input values. One commoy i&do replace the binary in-
put units by linear units with independent Gaussian noisgichvis known as Gaussian-binary
restricted Boltzmann machines (GRBMSs) or Gaussian-Bdlin@stricted Boltzmann machines
[Krizhevsky(2009), Cho et al.(2011)] first proposed by [\ive] et al.(2004)].

The training of GRBMs is known to be difficult, so that sevemabdifications have been pro-
posed to improve the trainingl [Lee et al.(2007)] used asgppenalty during training, which al-
lowed them to learn meaningful features from natural imagehpes. |[Krizhevsky(2009)] trained
GRBMs on natural images and concluded that the difficultiesmaainly due to the existence of
high-frequency noise in the images, which further prevémsmodel from learning the important
structures./[Theis et al.(2011)] illustrated that in tewh$kelihood estimation GRBMs are already
outperformed by simple mixture models. Other researcloenssed on improving the model in the
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view of generative models [Ranzato et al.(2010), Ranzatid-anton(2010), Courville et al.(2011),
Le Roux et al.(2011)Le Roux, Heess, Shotton, and Winn].  [€tred.(2011))] suggested that the
failure of GRBMs is due to the training algorithm and propbseme modifications to overcome
the difficulties encountered in training GRBMSs.

The studies above have shown the failures of GRBMs empliyjdalit to our knowledge there is
no analysis of GRBMs apart from our preliminary work [Wan@kef2012)], which accounts the
reasons behind these failures. In this paper, we extend akriwwhich we consider GRBMs from
the perspective of density models, i.e. how well the modsmine the distribution of the data. We
show that a GRBM can be regarded as a mixture of Gaussiansh\whE already been mentioned
briefly in previous studies [Bengio(2009), Theis et al.(2f)ICourville et al.(2011)] but has gone
unheeded. This formulation makes clear that GRBMs are {jmiteed in the way they can represent
data. However we argue that this fact does not necessagiept the model from learning the
statistical structure in the data. We present successiuing of GRBMs both on a two-dimensional
blind source separation problem and natural image pateimesthat the results are comparable to
that of independent component analysis (ICA). Based on oalyais we propose several training
recipes, which allowed successful and fast training in ogreeiments. Finally, we discuss the
relationship between GRBMs and above mentioned modifieaid the model.

2 Gaussian-binary restricted Boltzmann machines (GRBMs)

2.1 Themodd

A Boltzmann Machine (BM) is a Markov Random Field with stosti@visible and hiddenunits
[Smolensky(1986)], which are denoted ¥s:= (X1, ... ,XM)T andH := (Hq,.. .,HN)T, re-
spectively. In general, we use bold letters denote vectugw@atrices.

The joint probability distribution is defined as

P(X,H) = 1e #H BOGH) )

7 = //e 7 POOh) gy dh )

whereE (X, H) denotes arenergy functioras known from statistical physics, which defines the
dependence betwedhandH. The temperature paramefgyis usually ignored by setting its value
to one, but it can play an important role in inference of BMg§ardins et al.(2010)]. Thzartition
functionZ normalizes the probability distribution by integratingen\all possible values aX and

H, which is intractable in most cases. So that in training BMisg gradient descent the partition
function is usually estimated using sampling methods. Hewesven sampling in BMs remains
difficult due to the dependencies between all variables.

An RBM is a special case of a BM where the energy function doatao terms combining two

different hidden or two different visible units. Viewed agjgmphical model, there are no lateral
connections within the visible or hidden layer, which résuh a bipartite graph. This implies
that the hidden units are conditionally independent givenwisibles and vice versa, which allows
efficient sampling.

The values of the visible and hidden units are usually asdumbe binary, i.e X, H,, € {0,1}.
The most common way to extend an RBM to continuous data is aNgREhich assumes con-
tinuous values for the visible units and binary values far thdden units. Its energy function
[Cho et al.(2011), Wang et al.(2012)] is defined as
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where ||u|| denotes the Euclidean norm af. In GRBMs the visible units given the hid-
den values are Gaussian distributed with standard demiatio Notice that some authors



[Krizhevsky(2009)! Cho et al.(2011), Melchior(20112)] use independent standard deviation for
each visible unit, which comes into account if the data iswtatened [Melchior(2012)].

The conditional probability distribution of the visiblevgin the hidden units is given by
P(X,h)
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wherew;, andw,; denote theith row and thejth column of the weight matrix, respectively.
N (z;1,0%) denotes a Gaussian distribution with mearand variancer®. And NV (X; p, 0%)
denotes an isotropic multivariate Gaussian distributiemtered at vecton with variances? in all
directions. From[{[7) td {8) we used the relation
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The conditional probability distribution of the hidden tsgiven the visibles can be derived as
follows
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P(H|x) turns out to be a product of independent sigmoid functiortsichvis a frequently used
non-linear activation function in artificial neural netsr

2.2 Maximium likelihood estimation

Maximum likelihood estimation (MLE) is a frequently usecth@ique for training probabilistic

models like BMs. In MLE we have a data s&t = {X1,...,%5} where the observatiorsg are
assumed to be independent and identically distributedl.ji.i The goal is to find the optimal pa-

rameterd® that maximize the likelihood of the data, i.e. maximize thebability that the data is
generated by the modél [Bishop(2006)]. For practical reasme often considers the logarithm of
the likelihood, which has the same maximum as the likelihgiade it is a monotonic function. The
log-likelihood is defined as

L
InP(X;0) = 1nH (x;;© ZlnP X;;9). (16)
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We use the average log-likelihood per training case der‘myéd For RBMs it is defined as

0= <lnP(X Q) > <1n (ZeExh >> Iz, (17)

wherex € X. And (f(u)), denotes the expectation of the functipfu) with respect to variable.

The gradient of thé turns out to be the difference between the expectationsedfilergies gradient
under the data and model distribution, which is given by
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In practice, a finite set of i.i.d. samples can be used to aqpate the expectations in (19). While
we can use the training data to estimate the first term, we ddane any i.i.d. samples from
the unknown model distribution to estimate the second te8imce we are able to compute the
conditional probabilities in RBMs efficiently, Gibbs sanmg can be used to generate those samples.
But Gibbs-sampling only guarantees to generate samplastiie model distribution if we run it
infinite long. As this is impossible, a finite number bfsampling steps are used instead. This
procedure is known as Contrastive Divergenée(€D-k) algorithm, in which everk = 1 shows
good results [Hinton(200R)]. The CD-gradient approximais given by

<ZP (h[%) aE"h> <th| k) ( h)>x(k>, (20)

wherex(*) denotes the samples aftersteps of Gibbs sampling. The derivatives of the GRBM’s
energy function with respect to the parameters are given by
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and the corresponding gradient approximatién$ (20) become
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whereP (h = 1|x) := (P (hy = 1|x),---, P (hx = 1]x))7, i.e. P (h = 1|x) denotes a vector of
probabilities.

2.3 Themarginal probability distribution of the visible units

From the perspective of density estimation, the perforraafithe model can be assessed by exam-
ining how well the model estimates the data distribution. térefore take a look at the model's
marginal probability distribution of the visible units, wh can be formalized as a product of experts
(POE) or as a mixture of Gaussians (Md))

2.3.1 IntheForm of Product of Experts

We derive the marginal probability distribution of the Wil units P(X) by factorizing the joint
probability distribution over the hidden units.

P(X) = ZP(X,h) (29)
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Equation[(34) illustrates thd?(X) can be written as a product of factors, referred to as a product
of experts|[Hinton(2002)]. Each experf(X) consists of two isotropic Gaussians with the same
varianceNo2. The first Gaussian is placed at the visible BasThe second Gaussian is shifted

1Some part of this analysis has been previously reported Buffel & Haussler(1992)]. Thanks to the
anonymous reviewer for pointing out this coincidence.



relative to the first one byv times the weight vectow . ; and scaled by a factor that dependsmoy
andb. Every hidden unit leads to one expert, each mode of whiclesponds to one state of the
corresponding hidden unit. Figuré 1 (a) and (b) illustrBt&X) of a GRBM-2-2 viewed as a PoE,
where GRBMA/-N denotes a GRBM wittd/ visible andN hidden units.

2w,

(a) ‘ (b) ’ (©

Figure 1: lllustration of a GRBM-2-2 as a PoE and MoG, in whictows indicate the roles of the

visible bias vector and the weight vectors. (a) and (b) Visadhe two experts of the GRBM. The

red (dotted) and blue (dashed) circles indicate the cefteedwo Gaussians in each expert. (C) vi-
sualizes the components in the GRBM. Denoted by the greded(fitircles, the four components

are the results of the product of the two experts. Notice hasheomponent sits right between a
red (dotted) and a blue (dashed) circle.

2.3.2 IntheForm of Mixture of Gaussians

Using Bayes'theorem, the marginal probailityXfcan also be formalized as:

P (X) > P(X[h) P(h) (35)
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whereH;, denotes the set of all possible binary vectors with exaktlynes andM — k zeros
respectively. As an exampld, " ST P(hy : hy € Ha) = Y04, P(h) sums over the
probabilities of all binary vectors having exactly two éesrset to oneP(H) in (38) is derived as



follows
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Since the form in[(37) is similar to a mixture of isotropic Gaians, we follow its naming conven-
tion. Each Gaussian distribution is called@mponentf the model distribution, which is exactly
the conditional probability of the visible units given a peular state of the hidden units. As well
as in MoGs, each component hasnixing coefficientwhich is the marginal probability of the
corresponding state and can also be viewed as the prior lpfitpaf picking the corresponding

component. The total number of components in a GRBRiswhich is exponential in the number
of hidden units, see Figuké 1 (c) for an example.

The locations of the components in a GRBM are not indeperafezdich other as it is the case in
MoGs. They are centeredlat- Wh, which is the vector sum of the visible bias and selected iteig
vectors. The selection is done by the corresponding erntrirgaking the value one. This implies
that only theM + 1 components that sum over exactly one or zero weights caralsegband scaled
independently. We name them first order components and ttteoacomponent respectively. All
— M —1 higher order components are then determined by the chotbe @aihchor and first order
components. This indicates that GRBMs are constrained Matssotropic components.

3 Experiments

3.1 Two-dimensional blind source separation

The general presumption in the analysis of natural imagesh& they can be consid-
ered as a mixture of independent super-Gaussian sourcésafleSejnowski(1997)], but see
[Zetzsche and Rohrbein(2001)] for an analysis of remainiagendencies. In order to be able to
visualize how GRBMs model natural image statistics, we usexdéure of two independent Lapla-
cian distributions as a toy example.

The independent sources= (s1, sz)T are mixed by a random mixing matrix yielding

X' = As, (44)

wherep (s;) = 072‘3” . Itis common to whiten the data (see Secfiod 4.1), resuiting
% = VX = VAs, (45)
whereV = (xx/" _% is the whitening matrix calculated with principle compohanalysis

(PCA). Through all this paper, we used the whitened data.

In order to assess the performance of GRBMs in modeling tie diatribution, we ran the ex-
periments for200 times and calculated théfor test data analytically. For comparision, we also



calculated the/ over the test data for IGA an isotropic two-dimensional Gaussian distribution
and the true data distributi@nThe results are presented in Table 1, which confirm the csiu

of [Theis et al.(2011)] that GRBMs are not as good as ICA imeeof/.

Table 1: Comparision of between different models

/+ std
Gaussian —2.8367 £ 0.0086
GRBM —2.8072 £ 0.0088
ICA —2.7382 £ 0.0091

data distribution —2.6923 4 0.0092

To illustrate how GRBMs model the statistical structurelté tlata, we looked at the probability
distributions of the 200 trained GRBMs. About half of themi@lout of 200) recovered the in-
dependent components, see Fiddre 2 (a) as an example. Rhiedarther illustrated by plotting
the Amari error§ between the true unmixing matrix —* and estimated model matrices, i.e. the
unmixing matrix of ICA and the weight matrix of the GRBM, asosin in Figurd 8. One can see
that these 110 GRBMs estimated the unmixing matrix quite,\@though GRBMSs are not as good
as ICA. This is due to the fact that the weight vectors in GREvEsnot restricted to be orthogonal
asinICA.

For the remaining 90 GRBMs, the two weight vectors pointetheoopposite direction as shown
in Figure[2 (b). Accordingly, these GRBMs failed to estim#ite unmixing matrix, but in terms of
density estimation these solutions have the same qualittyeasrthogonal ones. Thus all the 200
GRBMs were able to learn the statistical structures in thie dad model the data distribution pretty
well.

For comparison, we plotted the probability distributioredBarned GRBM with four hidden units,
see FigureR (c), in which GRBMs can always find the two indelpahcomponents correctly.

To further show how the components contribute to the mod#lidution, we randomly chose one of
the 110 GRBMs and calculated the mixing coefficients of trehanand the first order components,
as shown in Tablg]2. The large mixing coefficient for the amclomponent indicates that the model
will most likely reach hidden states in which none of the l@ddinits are activated. In general, the
more activated hidden units a state has, the less likehlib@ireached, which leads naturally to a
sparse representation of the data.

Table 2: The mixing coefficients of a successfully-traind®Bb-2-2, GRBM-2-4 and an MoG-3.
>, P(h) 3 P(h) > P(h) 3 Ph) > P(h)
heH, heHs heHs

heto heH,y
GRBM-2-2 0.9811 0.0188 7.8856e-05 - -
GRBM-2-4 0.9645 0.0352 3.4366e-04 1.2403e-10 6.9977e-18
MoG-3 0.9785 0.0215 - - -

2For the fast ICA algorithm [Hyvarinen(1999)] we used faiting, the/ for super Gaussian sources can
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(a) GRBM-2-2 (b) GRBM-2-2
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Figure 2: lllustration of the log-probability densitiesh& data is plotted in blue dots. (a)GRBM-2-2
which learned two independent components. (b)GRBM-2-Zwlkéarned one independent com-
ponent with opposite directions. (C) GRBM-2-4. (d)An isgtic MoG with three components. The

arrows indicate the weight vectors of GRBM, while the crgsdenote the means of the MoG com-
ponents. Comparing (a) and (d), the contribution of the sé@yder component is so insignificant

that the probability distribution of the GRBM with four comipents is almost the same as the MoG
with only three components.

The dominance 0, ., P(h) and all}, -,  P(h) can also be seen in Figurk 2 by comparing a
GRBM-2-2 (a) with an two dimensional MoG having three ispioocomponents denoted by MoG-
2-3 (d). Although the MoG-2-3 has one component fewer thenGRBM-2-2, their probability
distributions are almost the same.

3.2 Natural image patches

In contrast to random images, natural images have a commaderlymg structure which
could be used to code them more efficiently than with a pixskewrepresentation.
[Olshausen and Field(1996)] showed that sparse codingdls an efficient coding scheme and
that it is in addition a biological plausible model for thengile cells in the primary visual cor-
tex. [Bell and Sejnowski(1997)] showed that the indepehdemponents provide a comparable
representation for natural images. We now want to test eoaflir whether GRBMs generate such
biological plausible results like sparse coding and ICA.

We used theimlog natural image Database of [van Hateren and van der Sch&&f18nd ran-
domly sampled 70000 grey scale image patches with a siz¢x0f 4 pixels. The data was whitened
using Zero-phase Component Analysis (ZCA), afterwardsais wivided into 40000 training and
30000 testing image patches. We followed the training ecipentioned in Sectidn 4, since train-
ing a GRBM on natural image patches is not a trivial task.

In Figure[4, we show the learned weight vectors namely featar filters, which can be re-
garded as receptive fields of the hidden units. They areyfairhilar to the filters learned by
ICA [Bell and Sejnowski(1997)]. Similar to the 2D experintgwe calculated the anchor and first
order mixing coefficients, as shown in Table 3. The coeffisieme much smaller compared to the
anchor and first order coefficients of the GRBMs in the two disienal case. However, they are
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Figure 3: The Amari errors between the real unmixing matrig ¢he estimations from ICA and
the 110 GRBMs. The box extends from the lower to the upper tijearalues of the data, with a
line at the median. The whiskers extend from the box to sh@wdhge of the reliable data points.
The outlier points are marked by “+”. As a base line, the aramdrs between the real unmixing
matrices and random matrices are provided.

Figure 4: lllustration of 196 learned filters of a GRBM-19861 The plot has been ordered from
left to right and from top to bottom by the increasing averagtvation level of the corresponding
hidden units.

still significantly large, considering that the total numb&components in this case23. Similar
to the two-dimensional experiments, the more activateddnidinits a state has, the less likely it will
be reached, which leads naturally to a sparse represantdiosupport this statement, we plotted
the histogram of the number of activated hidden units pémitrg sample, as shown in Figdrk 5.

Table 3: The mixing coefficients of GRBMs-196-196 per comgran(the Partition function was
estimated using AlS).

>, P(h) > P(h) >, P(h)

heHo het, heH\{HoUH1}

GRBM-196-196  0.04565 0.00070 0.95365

We also examined the results of GRBMs in the over-complete,cee. GRBM-196-588. There
is no prominent difference of the filters compared to the detepcase shown in Figufé 4. To
further compare the filters in the complete and over-coreptese, we estimated the spatial fre-
guency, location and orientation for all filters in the sphtnd frequency domains, see Fig-
ure[6 and Figur€]l7 respectively. This is achieved by fittingab@ function of the form used
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Figure 5: The histogram of the number of activated hiddetsy@r training sample. The histograms
before and after training are plotted in blue (dotted) angréen (solid), respectively.

by [Lewicki and Olshausen(1999)]. Note that the additidiiitdrs in the over-complete case in-
crease the variety of spatial frequency, location and tatém.

(2) GRBM-196-196 (b) GRBM-196-588
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Figure 6: The spatial layout and size of the filters, whichdescribed by the position and size of
the bars. Each bar denotes the center position and the a@nbf a fitted Gabor function within
14 x 14 grid. The thickness and length of each bar are propotiont gpatial-frequency bandwidth.

4 Successful Training of GRBMson Natural mages

The training of GRBMs has been reported to be difficult [Kaezbky(2009)| Cho et al.(2011)].
Based on our analysis we are able to propose some recipek shocld improve the success and
speed of training GRBMs on natural image patches. Some of teenot depend on the data distri-
bution and should therefore improve the training in general

4.1 Preprocessing of the Data
The preprocessing of the data is important especially iftlodel is highly restricted like GRBMs.

Whitening is a common preprocessing step for natural imagjesmmoves the first and second order
statistics from the data, so that it has zero mean and uniénee in all directions. This allows train-

11
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Figure 7: A polar plot of frequency tuning and orientationtloé learned filters. The crosshairs
describe the selectivity of the filters, which is given by thié6-bandwidth in spatial-frequency and
orientation, [[Lewicki and Olshausen(1999)].

ing algorithms to focus on higher order statistics like ksi$, which is assumed to play an important
role in natural image representations [Olshausen and(E@®8%), Hyvarinen et al.(2001)].

The components of GRBMs are isotropic Gaussians, so thahtitel would use several compo-

nents for modeling covariances. But the whitened data hpberigal covariance matrix so that the

distribution can be modelled already fairly well by a singtanponent. The other components can
then be used to model higher order statistics, so that wendtaat whitening is also an important

preprocessing step for GRBMs.

4.2 Parameter |nitialization

The initial choice of model parameters is important for oyziation process. Using prior knowledge
about the optimization problem can help to derive an ini&lon, which can improve the speed and
success of the training.

For GRBMs we know from the analysis above that the anchor comapt, which is placed at the
visible bias, represents most of the whitened data. Theréfiags reasonable in practice to set the
visible bias to the data’s mean.

Learning the right scaling is usually very slow since theghés and biases determine both the po-
sition and scaling of the components. In the final stage afitrg GRBMs on whitened natural
images, the first components are scaled down extremely aaahpathe anchor component. There-
fore, it will usually speed up the training process if weialize the parameters so that the first order
scaling factors are already very small. Considering eqund@1), we are able to set a specific first
order scaling factor by initializing the hidden bias to
b+ w2 = ||b||?

j:_|| + ;C|r|2 |[bl] +ln;, (46)
so that the scaling is determined by which should ideally be chosen close to the unknown final
scaling factors. In practice, the choicedofil showed good performance in most cases. The learning
rate for the hidden bias can then be set much smaller thaedneihg rate for the weights.

According to [Bengio(2010)], the weights should be iniiad tow;; ~ U (—ﬁ, A‘[/EM)

whereU (a, b) is the uniform distribution in the interval [a, b]. In our eeqience, this works better
than the commonly used initialization to small Gaussiastrifiuted random values.

4.3 Gradient Restriction and Choices of the Hyper parameters

The choice of the hyper-parameters has an significant ingratte speed and success of training
GRBMs. For successful training in an acceptable number datgs, the learning rate needs to be
sufficiently big. Otherwise the learning process becomesstow or the algorithm converges to a
local optimum where all components are placed in the data@amBut if the learning rate is chosen
too big, the gradient can easily diverge resulting in a nunaverflow of the weights. This effect
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Method | Time per epoch in g
CD-1 2.1190
PCD-1 2.1348
CD-10 10.8052
PCD-10 10.8303
PT-10 21.4855

Table 4: Comparison of the CPU time for training a GRBM witffetient methods.

becomes even more crucial as the model dimensionalityasee so that a GRBM with 196 visible
and 1000 hidden units diverges already for a learning ra@eQsf1.

We therefore propose restricting the weight gradient columarmsVw.; to a meaningful size to
prevent divergence. Since we know that the components acegin the region of data, there is no
need for a weight norm to be bigger than twice the maximal daten. Consequently, this natural
bound also holds for the gradient and can in practice be ch®sen smaller. It allows to choose big
learning rates even for very large models and thereforeles#fst and stable training. In practice,
one should restrict the norm of the update matrix rather thamgradient matrix to also restrict the
effects of the momentum term and etc.

Since the components are placed on the data they are nat@sticted, which makes the use of a
weight decay useless or even counter productive since wethamveights to grow up to a certain
norm. Thus we do recommend not to use a weight decay regatiariz

A momentum term adds a percentage of the old gradient to threrdugradient which leads to a

more robust behavior especially for small batch-sizes.hindarly stage of training the gradient
usually varies a lot, a large momentum can therefore be agae@vent the weights from converging

to zero. In the late stage however, it can also prevent cgewee so that in practice a momentum
of 0.9 that will be reduced to zero in the final stage of trajnmrecommended.

4.4 Training Method

Using the gradient approximation, RBMs are usually traiagdlescribed in Sectidn 2.2. The qual-
ity of the approximation highly depends on the set of sampkedl for estimating the model ex-
pectation, which should ideally be i.i.d. But Gibbs samglirsually has a low mixing rate, which
means that the samples tend to stay close to the previousbepted samples. Therefore, a few
steps of Gibbs sampling commonly leads to a biased apprdéiximaf the gradient. In order to
increase the mixing raté [Tieleman(2008)] suggested taaysersistent Markov chain for drawing
samples from the model distribution, which is referred asiggent Contrastive Divergence (PCD).
[Desjardins et al.(2010)] proposed to use parallel termggi?T), which selects samples from a per-
sistent Markov chain with a different scaling of the enengiydtion. In particular][Cho et al.(2011)]
analyzed PT algorithm for training GRBMs and proposed a firexliversion of PT.

In our experiments all methods above lead to meaningfulifeatand comparablé but dif-
fer in convergence speed as shown in Figlle 8. As for PT, wel wsiinal algorithm
[Desjardins et al.(2010)] together with weight restriosand temperatures from 0.1 to 1 with step-
size 0.1. Although, PT has a better performance than CDsiahs a much higher computational
cost as shown in Tablé 4.

5 Discussion

The difficulties of using GRBMs for modeling natural images/é been reported by several au-
thors [Krizhevsky(2009), Bengio et al.(2006)] and variouzdifications have been proposed to ad-
dress this problem.

[Ranzato and Hinton(2010)] analyzed the problem from tle@wof generative models and argued
that the failure of GRBMs is due to the model’s focus on pridicthe mean intensity of each pixel
rather than the dependence between pixels. To model thei@owa matrices at the same time, they
proposed the mean-covariance RBM (mcRBM). In addition sodbnventional hidden unifs™,
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Figure 8: Evolution of thé of a GRBM 196-16 on the whitened natural image dataset forf8InD
using ak of 1, 10 each and PT with 10 temperatures. The learning curves am@vtrage over 40
trials. The learning rate was 0.1, an initial momentum tefi®.® was multiplied with 0.9 after each
fifth epoch, the gradient was restricted to one hundredthefriaximal data norm (0.48), no weight
decay was used.

there is a group of hidden units® dedicated to model the covariance between the visible .units
From the view of density models, mcRBMs can be regarded asowed GRBMs such that the
additional hidden units are used to depict the covariarides conditional probabilities of mcRBM
are given by

PXh™ ) =N (X;EWh™, ), 47)

whereX = (C diag(Phe) CT)_1 [Ranzato and Hinton(2010)]. By compariig(47) aind (9), it ca
be seen that the components of mcRBM can have a covariancix mhatt is not restricted to be
diagonal as it is the case for GRBMs.

From the view of generative models another explanation Her failure of GRBMs is provided
by [Courville et al.(2011)]. Although they agree with thego@bility of GRBMs in modeling co-
variances, [[Courville et al.(2011)] argue that the deficyeis due to the binary nature of the hidden
units. In order to overcome this limitation, they develogeelspike-and-slab RBM (ssRBM), which
splits each binary hidden unit into a binary spike varidblend a real valued slab variablge. The
conditional probability of visible units is given by

N
1
P(X|s,h,||X|> < R) = N X; AT wagsihi, A (48)

j=1

where A is a diagonal matrix andB is determined by integrating the Gaussian
N(X; AN wa sk, A7) over the ball||X||? < R [Courville etal.(2011)]. In contrast

to the conditif)nal probability of GRBM$19w..; in (48) is scaled by the continuous variablg
which implies that the components can be shifted along theight vectors.

We have shown that GRBMs are capable of modeling naturalénpatches and that the reported
failures are due to the training procedute. [Lee et al.(30showed also that GRBMs could learn
meaningful filters by using a sparse penalty. But this pgraianges the objective function and
introduced a new hyper-parameter.

[Cho et al.(2011)] addressed these training difficultigspboposing a modification of PT and an
adaptive learning rate. However, we claim that the repatiffitulties of training GRBMs with PT
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are due to the mentioned gradient divergence problem. Walignt restriction we were able to
overcome the problem and train GRBMs with normal PT sucodigsf

6 Conclusion

In this paper, we provide a theoretical analysis of GRBM amalased that its product of experts
formulation can be rewritten as a constrained mixture of $Smns. This representation gives a
much better insight into the capabilities and limitatiofithe model. We use two-dimensional blind
source separation task as a toy problem to demonstrate h@&MSRodel the data distribution. In
our experiments, GRBMs were capable of learning meanirgéiures both in the toy problem and
in modeling natural images.

In both cases, the results are comparable to that of ICA.BBabntrast to ICA the features are not
restricted to be orthogonal and can form an over-complg@esentation. However, the success of
training GRBMs highly depends on the training setup, forakhive proposed several recipes based
on the theoretical analysis. Some of them can be furtherrgbred to other datasets or directly
applied like the gradient restriction.

In our experience, maximizing thedoes not imply good features and vice versa. Prior knowledge
about the data distribution will be beneficial in the modglprocess. For instance, our recipes are
based on the prior knowledge of the natural image statjstibi&ch is center peaked and has heavy
tails. It will be an interesting topic to integrate prior kmedge of the data distribution into the
model rather than starting modeling from scratch.

Considering the simplicity and easiness of training witlr puoposed recipe, we believe that
GRBMs provide a possible way for modeling natural imagesic€&iGRBMs are usually used as
first layer in deep belief networks, the successful traimh@RBMs should therefore improve the
performance of the whole network.
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